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ABSTRACT Wound area segmentation really progressed with the emergence of deep learning, due to its
robustness in uncontrolled lighting and no need to design hand-crafted features but two limits have still to be
overcome : firstly, its performance relies on the size and quality of the training dataset in the medical field,
where data annotation is costly and time-consuming ; secondly the accuracy of the segmentation depends
highly on the camera distance and angle and moreover perspective effects prevent measuring real surfaces
in single views.
To address concurrently these two issues, we propose to apply multi-view modeling : an image sequence is
acquired around the wound site and enables wound 3D reconstruction. Then, a segmentation step is run to
extract roughly the wound from the background in each view and to select the best view with an original
strategy. This view provides the most accurate segmentation and the real wound bed area even on non
planar wounds. Finally, this segmentation is backprojected in each view to generate a complete set of well
annotated real images to reinforce the learning step of the neural network.
In our experiments, we compare several strategies to select the best view in the image sequence. The
proposed method, tested on a dataset of 270 images, outperforms standard deep learning approach based on
a single view, as recorded with DICE index and IoU score which rise respectively from 36.53% to 86.3%
and 29.48% to 77.09% for the wound class to achieve an overall DICE and IoU score of 93.04% and 86.61%
including background class. These results attest to the robustness of our method and its improved accuracy
in the wound segmentation task.

INDEX TERMS Deep Learning, 3D Registration, Chronic Wounds, Semantic Segmentation, Data
Augmentation, U-Net

I. INTRODUCTION

CHRONIC wounds are a major health issue that affect
population quality of life and lead to a huge burden

for the healthcare systems worldwide [1]. Chronic wounds
include venous ulcers, pressure injuries, diabetic ulcers,
traumatic and surgical ulcers, etc. These wounds are com-
plex and heal gradually depending on their severity. Wound
healing process is a complicated procedure that requires
regular checkups by wound specialists. The fundamentals
of a successful clinical care require trained clinicians with
fast decision making. Tracking wound size including length,

width, depth, and circumference is a key indicator to enable
healing and evaluate response to treatment.

There are various methods to assess the healing progress,
most commonly, practitioners use rudimentary modalities to
measure the surface area such as simple rulers or wound
outline tracing [2] [3] [4]. Even more, a moldable material
or a cotton tipped swab are inserted inside the wound cavity
to measure the volume and depth [5]. These manual methods
are often harmful, time consuming and require wound contact
which can carry high risk of infection. In addition, the accu-
racy of these techniques relies on the subjective diagnosis of
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clinicians depending on their prior experience [6]. However,
for a relevant wound assessment, it is vital that the ideal
measuring tool must be unbiased, accurate and consistent.

Over the last years, the application of photography became
increasingly popular in clinical practice. It avoids direct
wound contact and enable clinicians to achieve more consis-
tent and accurate wound assessment. More recently, smart-
phone wound image analysis have been extensively used to
assist clinicians in qualitative diagnosis. Smartphones are
low-cost, noninvasive, user-friendly and are already equipped
with high-resolution cameras.

2D imaging measurements can be greatly affected by body
curvature, wounds are not planar and perspective distortion
affects area estimation [7]. Also, a single view does not
provide volume and depth information that are essential to
perform an accurate chronic wound monitoring. 3D imaging
techniques overcomes the shortcomings and limitations of
2D methods. 3D methods have been introduced to improve
assessment in different medical areas [8]. They provide a
more accurate evaluation of wounds than a simple 2D ap-
proach [5]. Existing 3D scanning devices are actually expen-
sive and not adapted to the clinical practice. In contrast, two
or more converging pairs of views can be used to reconstruct
the 3D surface area of the wound using a smartphone camera
and a simple multi-view approach based on Structure from
motion (Sfm). The reconstructed 3D model can be monitored
from any angle and perspective. In addition, the obtained 3D
point clouds can offer much more detailed information about
the lesion regardless of the wound position and size.

Background segmentation is an essential step in pho-
tography based wound analysis because it influences the
outcome of the entire assessment process (area, perimeter,
etc). The segmentation in the 3D model is obtained from
the 2D segmentation of each image using scene fusion. 2D
segmentation is performed using DL, then the results are
directly mapped on the mesh surface of the 3D model. Thus,
it is important to perform an accurate DL segmentation of the
2D images to obtain a precise wound delineation in the 3D
model. However, despite the success of DL in many wound
segmentation applications, there is a major limitation of these
DNN. To obtain good performance a massive number of
annotated images is required for training. Indeed, this is
extremely cost-effective and expert-intensive in the field of
medical image analysis.

One of the most common techniques to overcome the
lack of training images is data augmentation, where images
are created virtually using different processing methods like
translation, flipping, rotation, scaling, etc. Nevertheless, these
techniques alter original wound shape characteristics, so the
produced images do not represent the real appearance of
the wound area. The same wound could greatly vary in
shape using a simple data augmentation technique by rotation
or translation. Thus, we propose a weakly supervised data
augmentation technique that includes all the aspects of the
wound from different point of views using real images. The
main idea is to capture multiple views of the wound by

moving the camera around it; to the left, right, up and down.
Then an automatic segmentation of these images using a
pretrained DNN could be used as annotations to extend the
training set. Hence, an accurate DL segmentation of all the
views is primordial. The same image sequence will be used
to obtain the segmentation of the wound in the 3D model.

However, DL is rather sensitive to camera distance and
shooting angle. To produce a correct segmentation, the image
has to be taken perpendicularly to the wound surface, what
we call a frontal view. In addition, the wound should be
located in the center of the image and with a distance not
too close nor far from the camera. If the angle or the distance
from the wound is slightly changed from a view to another
one, the accuracy can quickly decrease, especially for large
or highly curved lesions. Moreover, for small size wounds,
DL fails completely to segment the non-frontal views.

To this end, we propose a novel DL based wound seg-
mentation method that overcomes large angles and distance
variation using best view selection and 3D model reconstruc-
tion. The method goes through several steps: (1) semantic
segmentation of the 2D image sequence using a pretrained
network (2) 3D model reconstruction and best view selection
(3) reprojection of the best view segmentation on each image
of the multi-view sequence. The obtained masks could be
used to extend the training set and they can also be mapped
on the mesh surface of the 3D model to obtain a robust 3D
segmentation.

We evaluated our method by conducting comprehensive
experiments. We focused our experiments on diabetic foot
ulcers as they combine chronic wounds characteristics, is-
chemia and infection [9]. The proposed method provides
more precise and robust segmentation from any viewing
angle and distance. Moreover, it is applicable to all wound
types from the largest to the smallest ones regardless of their
location and healing stage.

The rest of the paper is structured as follows. In Section II,
a brief literature review on 2D wound segmentation methods
is provided followed by recent approaches for 3D model
reconstruction. Section III describes in details the complete
methodology proposed in this paper. In Section IV, segmenta-
tion results are shown and analyzed followed by a discussion
of our major experiments in Section V. Finally, in Section VI,
we conclude and suggest some directions for future work.

II. LITERATURE REVIEW
A. WOUND SEGMENTATION
Prior to the rise of deep learning in medical imaging, wound
segmentation mostly relied on machine learning algorithms
[16] [17] [18] and [10]. These methods generally use clas-
sifiers such as SVM which have the advantage of not be-
ing very data intensive. However, they require hand-crafted
features to extract color and texture descriptors. Moreover,
they suffer from a poor generalization in uncontrolled light-
ing environments. These problems were resolved by using
deep learning networks (DNN). Recent research works have
focused on DNN to address wound segmentation task using
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TABLE 1. Contribution comparison with related works

Gholami [10] Liu [11] Wang [12] QTDU [13] ASURA [14] Zahia [15] Ours
Wound Segmentation X X X X X X X
PixelWise Segmentation X X X X X
Deep Learning based X X X X X
Small Dataset X X X X
Smartphone based 2D to 3D

surface segmentation X X

convolutional neural networks (CNN) or fully convolutional
networks (FCN).

Alzubaidi et al. [19] developed a novel deep convolutional
neural network named DFU_QUTNet for diabetic foot skin
classification (normal and abnormal skin). Features extracted
by DFU_QUTNet were used to train SVM and KNN classi-
fiers. While Goyal et al. [20], trained a Faster R-CNN with
Inception V2 using two-tier learning with the MS COCO
dataset. Their objective was to detect DFU localization using
a relatively small dataset of DFU images. A post-processing
step was required to improve the results. In a recent work
[12], they performed foot ulcer segmentation using a light-
weight convolutional framework based on MobileNetV2 and
connected component labelling using a dataset consisting of
1109 foot ulcer images. Newer methods with EfficientDet
[21] provided superior ulcer detection accuracy during MIC-
CAI conference challenge using DFUC 2020 dataset [22].
This dataset consists of 4500 diabetic foot ulcer images with
expert annotations. Although the proposed methods were
highly accurate in wound localization [23] [24], both studies
did not address wound segmentation precision and wound
area measurement. Among the biggest limitation of these
methods is that thousands of annotated images are required to
attain such a good performance, a requirement that is costly
and difficult to satisfy in the medical field. To deal with the
massive training data requirement in DL, many researchers
used data augmentation and transfer learning [25]. Also,
other researchers adopted hybrid methods combining neural
networks and ML classifiers.

Wound segmentation on 3D surface model is commonly
used to improve the performance of the 2D segmentation
method. It helps to enhance wound detection from various
angles and distances independently of their size and shape.
To the best of our knowledge, there is a very limited number
of works that have addressed wound segmentation on 3D
surface using only smartphone images and DL techniques.
Liu et al. [11] proposed a method with 3D transformation
to measure wound area which implements 3D reconstruction
based on SFM, then LSCM was used to unwrap the UV
map of the 3D model. However, image segmentation was
performed by an interactive method which is time consuming
and relies on the experience of medical experts. Thus, the
authors state that an automatic segmentation method using
DL should be considered in the future to improve wound
extraction and measurement. In another paper, Zahia et al.
[15] proposed a DL based method using Mask RCNN to

perform wound segmentation on the 3D mesh. Although they
achieved good results, their method requires Structure Sensor
3D scanner to obtain the 3D reconstruction from smartphone
images. In this paper, we propose an end-to-end DL based
system for wound segmentation on 3D model surface using
smartphone images without any other equipment for 3D
model reconstruction. Table 1 summarizes a comparison of
related survey papers addressing wound segmentation against
our proposed method.

B. 3D MODEL CREATION
Given the disadvantages of traditional wound assessment,
technology that uses imaging to perform non-contact mea-
surements began to increase in popularity in the 1990s. In
particular, 3D measurements of wound characteristics be-
come popular as more accurate and precise information can
be obtained than with the use of 2D imaging. [26]–[28].

In the creation of 3D models, two methodologies can
be distinguished: active and passive reconstruction. Active
approach consists on sending a signal to the object of interest
to obtain accurately the depth and building 3D structure from
there. Devices using this approach are usually fast and can
offer high accurate results but are also expensive and might
require complex settings. Laser scanners and structured light
3D scanners are examples of technologies using active ap-
proach and have demonstrated accurate results for wound
measurements. [29] reports less than 2% errors and less than
4% precision rates error for volumetric calculations based on
laser scanner when compared to traditional manual methods.
Additionally, Darwig et al. [30] presented a 3D-scanners
based on active approach with no significant difference on
area measurements compared to using laser scanners.

Passive methods, on the other hand, are methods in which
no signal interferes with the object. They only require images
from digital cameras to infer the 3D point cloud and therefore
are less expensive and complex to use than active approach
devices. In particular, Structure from motion (SfM) is an
attractive technique as it only requires a single digital camera
and is available in several free software packages.

Previous studies demonstrate SfM can be useful for wound
assessment: In [31], a methodology based on SfM was shown
to be useful for wounds with precision of volumetric mea-
surements around 3%. On the other hand, [32] and [33],
demonstrate that SfM 3D models are repeatable and consis-
tent with laser scan 3D results: the registration error between
SfM and laser scan-based 3D models is on average less
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FIGURE 1. Workflow of the proposed 3D based segmentation method using DL and BV selection

than 1mm. In addition, the potential for using SfM increases
given the capabilities currently found in smartphone’s CPU
and GPU. Recent studies have shown that SfM can be fully
implemented in smartphones [34] [35].

III. METHODOLOGY
Our contribution can be summarized as follows (See Figure
1) :

1) A robust wound segmentation method with an effective
background removal using DL.

2) 3D model reconstruction using a simple acquisition
protocol with a monocular camera from a low-cost
smartphone and using SfM to infer the 3D structure.

3) A novel pipeline of wound segmentation that over-
comes large angles and distance variation using camera
view selection and 3D model reconstruction.

4) Experiments and analyses on various diabetic foot ul-
cers with different sizes and location that demonstrate
the effectiveness of our method.

A. ROBUST WOUND SEGMENTATION
We built an annotated database consisting of 569 chronic
wound images covering all pathologies such us diabetic
foot ulcers, burns, pressure injuries, etc, mostly captured
from a relatively perpendicular angle. This dataset contains
various wounds with distinct size and in different healing
stages. The images were taken in several medical sites with
different cameras and without any strict protocol regarding
lighting conditions. Consequently, the segmentation task was
quite challenging. Most images have different backgrounds

including lots of regions similar to the wound bed which
may threaten the segmentation. Indeed, segmenting chronic
wounds demands a high level of accuracy, small marginal
segmentation errors can lead to wrong measurements and
poor user experience in clinical settings. To this end, we
propose a robust wound segmentation method comprising
wound delineation and skin correction for an effective back-
ground removal without increasing the complexity of deep
neural networks.

To perform wound delineation, we based our segmentation
on our previous work [36] while proposing more robust
background elimination using skin correction. We opted for
the state-of-the-art semantic segmentation network U-net for
medical images [37]. U-net has proven to be very powerful
specifically in the field of biomedical images segmentation
using few data. Our method consists of two main stages (See
Figure 2).

First, wound area extraction which aims to eliminate
all background elements. Second, the obtained wound seg-
mentation mask will be post-processed by skin detection
algorithm. Its goal is to remove all background non-skin
pixels. Thus, only segmented elements inside skin area will
be conserved. When skin segmentation map is combined
with the wound map, we are able to provide more accurate
segmentation. Finally, the generated mask is further refined
by hole filling and the removal of missing small points in
the segmentation map using morphological operations (i.e.,
erosion, dilation, opening and closing) [38].

To perform robust 2D segmentation, the database was
divided into training and testing set. The partition percentage
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FIGURE 2. 2D chronic wound segmentation pipeline

was around 75% and 25% respectively. Both U-net networks
for wound and skin segmentation tasks were trained for 200
epochs and were implemented in Keras with TensorFlow
backend using the Adam optimization algorithm [39] with
a learning rate of 0.001. The performance of the proposed
segmentation procedure helped to improve the accuracy to
reach a Jaccard index of 98.48% and a Dice score of 99.26%
instead of 94.96% and 97.25% in the previous version [36]
using the same testing set. The proposed 2D segmentation
method overcomes perfectly complex background elimina-
tion and uncontrolled lighting conditions, but it still can be
greatly affected by high angle and distance variation due to
camera position and orientation in the image sequence.

B. 3D MODEL CREATION
Given the advantages in terms of required devices and porta-
bility, SfM has been selected for 3D model creation in this
study.

The 3D model of a wound requires images from different
viewpoints of a static scene. Therefore, patients are asked to
rest in a comfortable position. A card with a colored pattern is
placed near the wound to adjust the size of the digitized 3D
model. Next, the smartphone camera is placed between 10
and 20 cm in front of the wound in focus and acquisition is
started. By manually moving the camera in a circular motion
around the wound for 1 minute, about 40 photos are acquired.

The 3D modeling pipeline starts with a SIFT feature ex-
traction and matching after which the structure-from-motion
algorithm is used to infer the 3D structure. A sparse point
cloud is created to sketch the 3D model. Next, the Semi-
Global Matching (SGM) algorithm is used to create depth
maps in order to create a dense 3D point cloud and triangu-
lated surface on which texture is superimposed. As a final
step, a Laplacian filter is applied to reduce noise that may
appear during the reconstruction of the dense 3D model.

The described process for creating the 3D mesh is per-

FIGURE 3. 3D model creation pipeline

formed using an open source software: Alicevision [40]
which is possible to run automatically through Python. Fig-
ure 3 shows the pipeline based on SfM for the 3D mesh
creation.

As a result of this process, we obtain a dense 3D mesh for
the different views to relate the 2D segmentation to the 3D
model.

C. WOUND SEGMENTATION ON THE 3D SURFACE
MODEL
Since each DL segmentation mask can produce a different
outline of the wound in the 3D model, the distance and
angle between the wound surface and the camera is used to
select the most appropriate view. The distances and angles
are calculated as follows:

1) The 3D model is projected onto the camera plane and
using the corresponding DL segmentation mask, the
temporal segmentation of the wound is created in the
3D model.

2) From the point cloud corresponding to the wound
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FIGURE 4. Sample of best view selection in the multi-view sequence

surface, the Euclidean distance between each point and
the center of the camera is calculated.

3) For each triangle on the wound surface, the angle
between the principal camera ray and the normal of
each triangle is calculated.

4) Finally, we use the median of the distances and the
median of the angles calculated above to summarize
the relative position of each camera with respect to the
wound.

D. BEST VIEW SELECTION
Four strategies are used to select the most appropriate camera
view. For this, the relative position of each camera to the
wound calculated above is used. The selected view is respec-
tively:

• Strategy 1: The view with the most acute camera-to-
wound angle.

• Strategy 2: The view with the closest camera-to-wound
distance .

• Strategy 3: The view with the closest distance within the
5 images with the sharpest camera-to-wound angles.

• Strategy 4: The view with the most acute angle among
the 5 images with the closest distances between camera
and wound.

In Figure 4, the selection of a view with the strategy 3 is
shown as an example.

E. 3D MODEL SEGMENTATION AND
POST-PROCESSING
After selecting an appropriate view with one of the 4 strate-
gies, the corresponding segmentation mask is used to create
the final segmentation of the wound in the 3D model. This
segmentation is combined with a post-processing of the 3D
mesh to smooth the wound edges which consists of subdivid-
ing the wound contour in the 3D mesh and using a simple
neighbor averaging based on a wound indicator to obtain a
smoothed wound contour.

FIGURE 5. Workflow of the 3D model re-projection to update semantic
segmentation

Finally, the wound segmentation resulting from the above
process is projected onto the corresponding views of all 2D
images. The result is a collection of updated 2D segmentation
masks. Figure 5 shows the complete process performed to
create the 3D mesh segmentation and update the semantic
segmentation on the 2D images with the proposed methodol-
ogy.

IV. RESULTS
A. DATASET AND MATERIAL
In cooperation with the diabetology service of the CHRO
(Regional Hospital of Orleans in France), we collected a sec-
ond data set of 270 diabetic foot images taken from 7 patients
during multiple clinical visits. The images were captured
using a Xiaomi Note7 smartphone. The acquisition protocol
includes several points of views with different viewing angles
and distances for each wound.

For creating the ground truth labels, the wounds are manu-
ally delineated directly on the 3D model using MeshLab then
reviewed and verified by wound care experts. The segmented
3D model is then projected onto each of the camera views and
the corresponding wound segmentation masks are obtained
for each single view.

B. METRICS
To evaluate the segmentation performance, four metrics were
adopted. Dice Similarity Coefficient (DICE) and Intersec-
tion Over Union (IoU) were used to quantify the overlap
between the obtained segmentation mask and the ground
truth. While Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) were used to measure the difference
per pixel between the reference image and the obtained mask.
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FIGURE 6. Calculated Dice coefficient across different angles and distances

The smaller the value of RMSE and MAE, the better the
segmentation performance.

IoU =
|X ∩ Y |
|X ∪ Y |

(1)

DICE =
2 ∗ |X ∩ Y |
|X|+ |Y |

(2)

RMSE(X,Y ) =

√∑n
i=1(Xi − Yi)2

n
(3)

MAE(X,Y ) =

∑n
i=1 |Xi − Yi|

n
(4)

where X and Y are the ground truth and the segmented
mask, n is the total number of pixels in the image.

C. EXPERIMENTS AND ANALYSIS
To investigate the performance of the proposed method, we
compared the segmentation results achieved by our 2D seg-
mentation scheme including robust background elimination
using Deep Learning (DL) against those obtained by includ-
ing the 3D model with best view segmentation re-projection
(BV+DL). In the following experiments, we consider the
four different strategies introduced in Section III-D to choose
effectively the best view for the proposed method. As a
reminder, the best view in ST1, ST2, ST2 and ST4 is selected
based on the best angle, the closest distance, the closest
distance within the top 5 angles and the best angle among
the 5 closest distances, respectively.

Dice and IoU were evaluated on DFU dataset across differ-
ent angles and distances. Since the ulcer area in test images
is much smaller than the background, these two metrics were
measured locally to focus only on the segmented area. Figure
6 demonstrates that among all different angles and distances,
the 2D method based on DL only, shows the worst segmen-
tation performance according to DICE value compared to the
proposed strategies. DL method can be greatly affected by
viewing angle and distance. Starting with camera orientation,
to obtain a good segmentation, the acquisition angle should
be as perpendicular as possible to the wound bed, so closer

TABLE 2. Area calculation (px)

Area Calculation (px)
Patient Real_area DL ST1 ST2 ST3 ST4
Pat 1 514 385 456 456 456 456
Pat 2 4912 1629 4835 4194 3813 3813
Pat 3 59 11 59 59 58 57
Pat 4 94 8 91 91 91 94
Pat 5 359 293 341 341 341 341
Pat 6 51 0 29 51 51 42
Pat 7 324 227 297 316 297 316

to 0°. Bigger angle variation can result in lower segmenta-
tion accuracy. The best results were achieved for an angle
variation less than 10°, what we call frontal views. Then
DL performance started decreasing gradually the largest the
angle value became. For an angle value over 80°, DICE
was of 0%. Thus, DL method totally failed to detect the
wound area in those images. Moreover, DL is rather sensitive
to distance variation. The best segmentation was performed
with a distance value between 5 and 10 cm. Otherwise, the
method failed completely to segment the wound especially
when the distance exceeds 40 cm.

However, reprojecting the segmentation from the BV using
the 3D model helped to improve Dice across all angles and
distance values regarding all proposed strategies. The perfor-
mance of the obtained segmentation is much higher than DL.
In addition, the results show high segmentation consistency
among all points of view for the four strategies. Furthermore,
ST2 and ST4 consistently outperforms other strategies. These
two methods reached the highest Dice for the largest angles
and farthest distances. Meanwhile, the metric using ST1 was
lower than the other strategies but still better than DL.

Another interesting experiment to explore the effectiveness
of the proposed strategies over DL method, is to quantify
the number of detected pixels in the predicted mask. The
results of wound area calculation in comparison with the real
area corresponding to the ground truth for each patient were
reported in Table 2. Overall, ST1, ST2, ST3 and ST4 produce
high AC scores close to the RA of the ground truth according
all patients and consistently outperforms DL scores. The four
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FIGURE 7. Box-plot of Mean Absolute
Error

FIGURE 8. Box-plot of Root Mean Square
Error

TABLE 3. A Summary of segmentation improvement

Dice IoU MAE RMSE
DL 36.53% 29.48% 0.164 0.036
ST1 83.49% 73.56% 0.054 0.023
ST2 86.33% 77.09% 0.004 0.019
ST3 84.52% 74.21% 0.012 0.023
ST4 85.40% 76.00% 0.020 0.020

strategies performed similarly but, in most of the cases, ST2
was the closest to the ground truth.

For further analysis, Figure 7 and Figure 8 illustrate the
distribution of mean absolute error (MAE) and root mean
square error (RMSE) respectively, between the ground truth
mask and the obtained segmentation mask of each of the
tested methods. The box-plots of DL method indicate larger
MAE and RMSE resulting in lower segmentation quality. On
the contrary, all BV+DL strategies show lower MAE and
RMSE compared to DL. This correlates with higher segmen-
tation accuracy. Moreover, we observe that ST2 attains the
lowest MAE and RMSE in comparison to other strategies.
These results corroborate our previous findings about ST2
performing better than ST1, ST3 and ST4.

Qualitative comparison of both methods DL and ST2
against the ground truth are shown in Figure 10. We chose
image sequences of three patients with different DFU size

FIGURE 9. Segmentation results on the 3D model

(small, medium and big) to display our results. Really, the
proposed method performs better to segment the ulcer. It
successfully detected the wound area of different sizes and
shapes regardless of camera position and orientation. The
segmentation is much more accurate. In addition, the correct
detection of the wound in case of deep learning failures is a
statement of our method robustness.

Segmentation results on the 3D model are shown on Figure
9. These results are obtained by the fusion of single view
segmentation masks. To do this, first we performed wound
segmentation on each image of the multi-view sequence, then
these results are directly mapped on the mesh surface of the
3D model.

V. DISCUSSION
Comparing quantitative and qualitative results of the 2D
method based on single view DL segmentation and the pro-
posed method based on 3D model reconstruction and best
view segmentation reprojection, we can see a huge improve-
ment on metrics and segmentation quality. By comparing
different strategies to select effectively the best view, we
found out that ST2 performed the best and achieved the
highest performance. It has not only better accuracy, but also
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FIGURE 10. Segmentation results: (a) original images, (b) Ground truth, (c) output of DL method and (d) output of our method
VOLUME 4, 2016 9
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better robustness. This strategy consists on selecting the view
with the best distance.

Our method widely improved both Dice and IoU scores
and decreased segmentation error on test dataset (See Table
3). The obtained contours outline perfectly the wound area.
Thus, the proposed method not only overcomes the limita-
tions of DL due to wound size and location, but also guaran-
tees a precise segmentation among different shooting angles
and distances in the image sequence. However, despite the
high segmentation accuracy using the BV reprojection, the
segmentation performance drop significantly once rotation
angle exceeds 80° for all proposed strategies.

VI. CONCLUSION
In this paper, we attempted to solve weak DL segmenta-
tion accuracy problem due to camera position and shooting
angles during multi-view wound acquisition. A smartphone
was used to capture the wound from multiple views which
is cost-effective, user-friendly and harmless. Our approach
improves DL segmentation using the 3D model and best view
selection. Comprehensive experiments have demonstrated
the effectiveness of our method in comparison with single
view DL segmentation, the result is a robust segmentation
in all the views regardless of camera position and orienta-
tion. Therefore, the proposed method is used as an effective
weakly supervised data augmentation approach to deal with
the lack of annotated data in medical field using real images
that encompass all real aspects of the wound from different
viewing perspectives.

The obtained segmentation masks are also used to generate
the final segmentation of the wound in the 3D model. A future
research would be to use the 3D model for depth and volume
estimation to overcome the shortcomings of 2D methods
based on single view especially for highly curved wounds.
Moreover, we plan to extend our method to perform multi-
view tissue classification considering three classes (granula-
tion, slough and necrosis) using the 3D representation of the
wound to achieve a more robust tissue analysis. Thus, more
accurate assessment could be established including wound
area, depth and volume as well as tissue characterization.
Such a system can be used in clinical settings for all kinds of
chronic wounds regardless of their size, shape and location.
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