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----------------------------------------------------------------------------------------------------------------- 

Significance: 

We introduce and evaluate emerging devices and modalities for wound imaging and also promising 

imaging processing tools for smart wound assessment and monitoring. 

Recent advances: 

Some commercial devices are available for optical wound assessment but with limited possibilities 

compared to the power of multimodal imaging. With new low-cost devices and machine learning, 

wound assessment has become more robust and accurate.

Critical issues: 

The ability to embed advanced imaging technology in portable devices such as smartphones and 

tablets with tissue analysis software tools will significantly improve wound care. . As wound care is 

performed by nurses, the equipment needs to remain user-friendly, enable quick measurements, 

provide advanced monitoring and be connected to the patient data management system.
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Future directions: 

Combining several image modalities and machine learning, optical wound assessment will be smart 

enough to enable real wound monitoring, to provide clinicians with relevant indications to adapt the 

treatments and  to improve healing rates and speed. Sharing the wound care histories of a number of 

patients on databases and through telemedicine practice could lead to a better understanding of the 

healing process and thus a better efficiency when the recorded clinical experience has been converted 

into knowledge through deep learning.

Keywords: wound imaging, tissue classification, mobile health, computer vision, deep learning 

----------------------------------------------------------------------------------------------------------------- 

SCOPE AND SIGNIFICANCE 

All types of wounds will benefit from the emergence of advanced image acquisition devices and 

processing tools. As wound care is performed not only in hospital but also at home wound assessment 

needs to rely on low-cost, user-friendly and portable equipment. We summarize here recent 

experiments in computer vision laboratories on wound images with emerging image modalities and 

sensors. A comprehensive review of the introduction and development of imaging in wound 

assessment helps to understand the power and the limits of this tool in clinical practice.

TRANSLATIONAL RELEVANCE 

It is clear that adding information about the wound tends to improve the quality of assessment: each 

imaging modality extracts specific data to better evaluate the healing process. The assistance of 

medical experts is still required to provide the ground truth for tuning the image processing algorithms 

and validating the outputs. At a higher level, the knowledge of these experts is also necessary to 

combine all the data in order to describe the wound state accurately. 
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CLINICAL RELEVANCE 

The benefits of wound imaging are already visible in automatic wound assessment but the room for 

improvement is even greater if we consider wound monitoring. To anticipate and favour the evolution 

of a wound, it is necessary to integrate all its history and to analyse how the different regions, with 

their different tissue types, have been transformed, how the frontiers of these regions have been 

distorted and at what speed. By accumulating data, the learning process becomes more robust, 

enabling more efficient therapeutic options for wound care to be proposed to improve healing rates. 

We should not nevertheless forget that many other factors influence the wound evolution, in particular 

all the biological data documented in the patient's medical record. These data need to be included in 

the learning process to refine wound assessment and monitoring.

OVERVIEW

Evolution of practice 

The burden of wound care in the health system 

Wound care is a major health issue as it is anticipated that worldwide 380 million people will 

suffer from wounds by the year 2025. In 2018 in Europe for example, the population prevalence of 

chronic wounds was 3-4/1000 people, which roughly translates to between 1.5 and 2.0 million of the 

491 million inhabitants of the EU, and the annual incidence estimate for both acute and chronic 

wounds stands at 4 million in the region. There is a wide range of wounds, such as surgical, pressure 

or decubitus ulcers, venous stasis ulcers, arterial ulcers, diabetic ulcers, and traumatic injuries.

The rising prevalence of diabetes, a pathology associated with a slow healing process, and the 

growing geriatric population can be considered as the two major factors of the increase in the burden 

of wound care in the health system, further increased by the rise in the number of trauma injuries and 

road accidents. As publicly reported wound healing rates are far from reality, the cost could be higher 

for the health system1.
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These wounds have a major long-term impact on the health and quality of life of patients and their 

families, causing depression, loss of function and mobility, social isolation, prolonged hospital stays 

and high treatment costs. Emergency wound care and clinicians with considerable technical skill play 

a frontline role by performing successful wound care. It is also essential that the wounds be treated 

promptly and properly for the treatment to be efficient and to improve the wound healing rate. Patients 

with wounds need frequent clinical evaluation to check the local wound status regularly and adjust 

therapy. The assessment and monitoring of wounds is therefore a critical task in order to perform an 

accurate diagnosis and to select a suitable treatment. 

Manual assessment 

In clinical routine, wound care is performed by nurses as it is done when removing a dressing 

and cleaning the wound, a time-consuming procedure. As a result, wound assessment suffered for 

many years from being a strictly manual practice and poor data were available for accurate wound 

monitoring, especially when the patient was not followed by a single nurse.

The periodic assessment of a wound is based on visual examination: clinicians describe the wound 

by its physical dimensions and the nature of the different skin tissues involved. Measurements are 

generally made with a simple ruler, a Kundin gauge, by tracing the outline of the wound on a 

transparent sheet to compute its area, or more rarely by filling the wound with saline or producing an 

alginate cast to obtain the volume. Moreover, these methods are imprecise and require direct contact 

with the wound. Assessing the color and proportion of wound tissues helps to understand the progress 

of the healing and to provide a contactless quantitative measurement. Within the wound boundary, the 

healing status is assessed based on a color evaluation model corresponding respectively to the 

dominant color, i.e. red, yellow, black and pink, of the different tissues found on a wound (respectively 

granulation, slough, necrosis and epithelium). The ratio of the tissues is recorded on a color coded 

scale2. However, during wound tissue identification, it is difficult for clinicians to determine their precise 

proportions by a simple visual inspection. Therefore, numerous techniques have become available for 

tissue classification over the wound region, ranging from the use of tracings to more sophisticated 

methods requiring the use of cameras and computers. 
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Pioneering work in optical imaging 

Imaging technology started to upgrade wound assessment thanks to the capture of color pictures 

but it only became common practice with the development of low-cost digital cameras, which also 

attracted image processing research toward wound image analysis. Many pioneering studies focused 

on 2D analysis as the wound area can be easily obtained after contour following and a complete 

segmentation process can provide regions labelled by different tissues after a classification step3-4-5. 

Unfortunately, several drawbacks limit the interest of a simple 2D approach: wounds are not planar 

and perspective effects degrade area estimation; color constancy is not ensured due to changes in 

lighting and the spectral response of the sensor. Unless a large image database is created and 

labelled by medical experts, machine learning of tissue features is poor. 

In other work, the problem of 3D reconstruction to obtain wound depth and volume was 

tackled by two techniques, namely passive versus active vision (Fig.1). In the first case, several 

images are combined through stereo photogrammetry prototypes to obtain 3D points after matching 

homologue points in the images6-7-8. In the second case, laser or white light patterns such as dots or 

lines are projected onto the wound and 3D data are obtained over these projections by triangulation9-

10-11. These techniques still have their limitations, however: these pioneering devices required tedious 

calibration and were complex, cumbersome and expensive. As wounds have a high prevalence in 

most hospital services, a large number of compact, low-cost systems are needed. As already 

mentioned, wound care and monitoring is done by nurses, who need simple procedures and cannot 

undertake time-consuming assessment on a routine basis. For extensive exams on severe wounds, it 

is necessary to obtain more reliable diagnosis with an advanced multimodal device.

No work investigated a unified approach capable of dealing both with wound shape and tissue area 

measurements, the two essential components of a complete wound assessment. Later, a simple 

digital camera provided at low cost a 3D model of the wound labelled with the different tissues, like a 

geographic relief map12-13 (Fig.2). The drawbacks mentioned above were also overcome: auto 

calibration avoided a tedious calibration step14 and a reference pattern placed near the wound 

provided both colour correction and the scale factor15-16.

Subsequently, no significant improvements were made in the design of dedicated tools for 

wound assessment as most research still adopted a classical approach and only minor enhancements 
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were reported17-18-19-20-21. The emergence of low-cost, accurate, portable and handheld devices was to 

radically change wound care practice.

First commercial devices for wound care 

The first device marketed that adopted a unified approach to some extent was the 

SilhouetteMobileTM system22 (Aranz Medical Ltd, New Zealand), (Fig.3 left) which combines a color 

image with a rough 3D description obtained by three laser lines projected on the wound (Fig.5). 

However, the color image is only used to obtain the wound outline and consequently an average 

volume from laser data; tissues inside the wound are not classified to monitor wound appearance. To 

evaluate its accuracy, a comparison with VisitrakTM (Smith & Nephew, United Kingdom) wound 

measurement system23, a tool based on manual tracing on transparent sheets reported onto a tactile 

tablet, was carried out with a reference provided by an elliptical estimation24. 

For accurate 3D measurements, more data points are required. The WoundZoom (Woundzoom Inc, 

USA) device is based on a specially designed tablet which contains a built-in 3-D image sensor that 

can capture the length, breadth and width of a patient’s wound. The software program calculates the 

surface area and volume. It provides professionals with thermal mapping, which is another indicator of 

tissue health. Recently, InSight25 (EKare, USA) (Fig.3 right) a device including a compact stereoscopic 

camera interfaced with an iPad, computer vision and machine intelligence for 3D wound 

measurement, tissue classification and wound border delineation has been marketed26.

Emerging acquisition devices and image modalities 

Imaging technology progressed rapidly with the emergence of new modalities at reduced cost. 

Spectral exploration was developed to detect non visible wavelengths, and drastically improved 

spectral resolution. It provides relevant data for tissue analysis and classification. Concurrent 

techniques are also available for geometrical measurements on the 3D surface of the wound. The 

trend is to combine spectral analysis and 3D scanning with multimodal devices.

Spectral exploration: multispectral, hyperspectral, thermal
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Acquiring precise wavelengths, about ten for a multispectral image or one or two hundreds in 

the case of a hyperspectral image, provides much more data than color imaging, which is limited to 

red, green and blue channels with a large bandpass. These imaging systems, initially developed for 

remote sensing applications, are now becoming widespread in industry to control manufactured parts 

or food, and have been applied more recently in the medical field where visible and infrared bands are 

investigated. 

The acquisition technique uses pushbroom sensing, in which the scene is scanned during airborne 

displacement of the sensor. Since the camera needs to be translated as in a photocopier to obtain a 

spectrum in each scanned line, this technique is not adapted to wound imaging where the capture of 

complete image frames is required. To capture a hyperspectral cube, composed of a series of images 

at different wavelengths, it is necessary to operate very quickly when the scene is not static. A basic 

and low-cost approach is to use a wheel with several filters to capture in vivo wound images. Even 

with a few wavelengths, preliminary experimentations on wounds indicated that diagnosis can be 

greatly improved with spectral discrimination27. Manual filter selection can be avoided with liquid 

crystal filters which are electronically tuned through a computer interface. This technique proved to be 

efficient to explore which wavelengths are relevant to detect and display vital tissues during surgery in 

an operating room28. Recently, advanced snapshot mosaic sensors29 (IMEC, Belgium)  have been 

marketed. As they allow a series of wavelengths to be captured simultaneously in the visible and near 

infrared band, medical applications will undoubtedly benefit from this technology. Another technique to 

gather tissue response to specific wavelengths is to illuminate the tissue with these wavelengths in a 

dark environment. For example, based on digital light processing videoprojection, a hyperspectral 

imaging system has been designed for visualizing the chemical composition of in vivo tissues during 

surgical procedures, in particular to quantify the oxygenation of the tissues30. In a recent study, 

monitoring wound healing in a 3D wound model by hyperspectral imaging was investigated. An in-vitro 

3D wound model was established and incubated without and with acute and chronic wound fluid. The 

model was able to correlate cell quantity and spectral reflectance during wound closure31.

The number of wavelengths provides sharp discrimination between tissues but the ability to 

stimulate tissues with only a particular wavelength can reveal hidden properties. This is the case of the 

i:X Wound Intelligence device32 (MolecuLight, Canada) (Fig.4). With the guidance of fluorescence 

imaging, this portable touch-screen with an intuitive interface allows clinicians to quickly, safely, and 
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easily visualize bacteria. They simply appear in red in the image, providing maximum insights for 

accurate treatment selection. The device emits a precise wavelength of safe violet light, which 

interacts with the wound tissue and bacteria, causing the wound and surrounding skin to emit a green 

fluorescence and potentially harmful bacteria to emit a red fluorescence. A similar approach is 

followed in the SnapshotNIR device33 (Kent Imaging, Canada) (Fig.5) which uses light in the near-

infrared spectrum for wound assessment. As the wavelength dependent light absorption of 

haemoglobin differs if it is carrying oxygen from when it is not, this device displays images of oxygen 

saturation. It gives access to tissue perfusion and blood flow which are key factors for clinicians to 

determine the course of treatment for a chronic wound.

Higher wavelengths in the infrared band provide thermal information. As new devices become 

more and more affordable and are now integrated in compact modules, thermal cameras are 

becoming common for industrial control and visual inspection. This imaging modality is particular 

relevant for wound assessment and has been investigated in this field34-35-36. It allows for physical and 

physiological monitoring, feeding information to the physician about blood flow and metabolic activity 

and it helps to identify differences between affected and unaffected tissues. The Scout solution37 

(Woundvision, USA), for instance, is a visual and infrared imaging device that measures and records 

wound size and pathophysiological changes reflected in the underlying tissues, based on temperature 

differential. In the current European STANDUP project38 (Smartphone Thermal ANalysis for Diabetic 

Foot Ulcer Prevention detection and treatment) dedicated to diabetic foot ulcers39 (Fig.6), thermal 

information is used to prevent ulcers by hyperthermia detection, to monitor ulcer healing by combining 

thermal, colour and 3D measurements and to improve the design of foot insole and foot pads. 

We do not consider non optical modalities in this paper but we should mention the combination of 

high frequency ultra sound with colour images, as ultra sound provide complementary knowledge on 

the nature of underlying tissues40 and ultrasound elastography provided images which can  enable 

pressure ulcer early detection41. 

3D geometrical measurements: shape from motion, pattern projection, time of flight 

cameras, plenoptic cameras 
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A single image provides a lot of information on a wound but it fails to produce accurate shape 

measurements, due to perspective projection errors on non planar wounds. To obtain 3D data, many 

approaches are now possible.

 By combining several images from different points of view, 3D points can be reconstructed by 

triangulation. This is the basic concept of stereoscopic systems. Nowadays, the acquisition of image 

pairs can be advantageously replaced by video acquisition, since in an image sequence the mapping 

of homologous points is easily done between two successive images, whereas it is often tricky to find 

corresponding points between distant viewpoints. The weak point of this technique is that it does not 

work if the wound is insufficiently textured: not enough points can be matched between the images, 

resulting in a sparse 3D map and poor measurements. On well textured scenes, this shape from 

motion approach competes with powerful laser scanners equipped with turning tables, as tested in a 

study on volume estimation of skin ulcers42 (Fig.7).

To ensure more robust results than with the preceding passive vision techniques, in active 

vision light patterns are projected onto the wound to obtain a 3D shape from the distorted pattern. This 

is the solution embedded in the commercial wound assessment device Silhouette (Aranz Medical, 

New Zealand) which projects three laser lines to obtain wound 3D data. The projection of a textured 

pattern provides denser 3D maps for accurate volume estimation, as done with the Insight device 

(EKare, USA).

Recently, affordable time of flight cameras became available. These cameras are so named 

because they produce depth images by measuring on each point the time taken by light to reach this 

point and be reflected back to the sensor. These devices have been advantageously compared to 

manual techniques for wound volume measurement43. This is also the case in a new multimodal 

prototype sensor system for wound assessment and pressure ulcer care. Multiple imaging modalities 

including RGB, three-dimensional (3-D) depth, thermal, multispectral, and chemical sensing are 

integrated into a portable hand-held probe for real-time wound assessment It performs various 

assessments including tissue composition, 3D wound measurement, temperature profiling, spectral, 

and chemical vapor analysis to estimate healing progress44.

Another class of sensors could soon revolutionize photographic devices. It is constituted by 

newly manufactured plenoptic sensors45, (Raytrix, Germany), which are already integrated in industrial 

inspection tasks. Whereas a classical digital camera measures on given pixel the total intensity of light 
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emitted from one point of the real scene, a plenoptic camera also captures in a single snapshot the 

direction of each ray contributing to the intensity on a pixel, called the light field. 

It enables super-resolution with multi-view stereo, all in-focus, less occlusion with variable baselines 

and depth maps for metrically correct measurement. In the near future, this technology could be 

integrated in smartphone cameras as light field modules for smartphones have aroused the interest of   

manufacturers. These tools are very promising for medical applications. For example, in soft-tissue 

surgery, a novel fused plenoptic and near infrared camera tracking system enables three-dimensional 

tracking of tools and target tissue while overcoming blood and tissue occlusion in the uncontrolled, 

rapidly changing surgical environment46.

Machine intelligence for tissue segmentation 

Expert knowledge 

When wound assessment is done during visual examination, the clinician’s knowledge is 

required to characterize the nature of the tissues. Even with the naked eye, an expert is able to 

discriminate between healing and infected tissues under non controlled lighting, but his/her efficiency 

is limited to producing quantitative measurements over the wound status or evolution. Wound imaging 

enables automatic measurement of tissue areas but tissue classes need to be first defined. Clearly, 

the expert knowledge needs to be transferred to the machine vision system by a learning step. It 

consists in collecting certified samples of each class of tissue to constitute a tissue database. 

The clinician can draw tissue outlines on digital wound images but this process is time consuming. 

One alternative is to label previously segmented images with one of the tissue class labels. The 

clinician is no longer free to delimit exactly tissue regions but if the segmentation level is small 

enough, one can avoid creating hybrid regions containing several tissue classes, which the clinician 

would be unable to label. Note that intra-observer repeatability is not maximal in this process and that 

inter-observer repeatability is even lower, so that several experts are needed to produce a robust 

ground truth. Tissue regions with poor consensus should be discarded for the learning step.
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Machine learning 

A wound database is built from part of the labelled sample tissues. Then machine learning is 

run and validated by automatically segmenting the other part of the samples called the test database.  

Building a tissue model requires manually extracting color and texture descriptors to characterize each 

sample and assign the correct tissue label to it. A machine learning approach is still very popular and 

forms the basis of many successful commercially available medical image analysis systems. The 

support vector machine (SVM) is the most popular supervised algorithm, and typically exhibits the 

highest performance for most classification problems, given its advantages of regularization and 

convex optimization. Various machine learning models have been created to perform wound tissue 

classification. For example, a robust skin tissue classification tool using cascaded two staged SVM 

based classification was proposed15. The segmentation task was performed by extracting texture 

descriptors and color descriptors from wound images, followed by the SVM classifier to classify the 

different tissues within the wound into three types (granulation, slough and necrosis). Similarly, 

computer methods based on manually engineered features or image processing approaches were 

implemented for the segmentation of diabetic foot ulcers (DFU).

Convolutional neural networks 

A crucial step in the traditional machine learning workflow is the selection of discriminant 

features from the images. This process is still done by humans. On the other hand, with deep learning, 

the so called new generation of neural networks, manual feature engineering is not required. Instead, 

the network learns on its own by processing the high-level features from raw data, but massive image 

databases are required for the learning step.

After the success of deep learning in other real-world applications, it is also providing exciting 

solutions with good accuracy for medical imaging and is seen as a key method for future applications 

in the health sector47. Traditionally, scientific discoveries are the result of intuition and observation, 

making hypotheses from associations and then designing and running experiments to test the 

hypotheses. However, with medical images, observing and quantifying associations can often be 

difficult because of the wide variety of features, patterns, colours, values and shapes that are present 

in real data. Here, deep learning can extract new knowledge from the accumulation of hundreds of 

thousands of real cases. Deep learning in healthcare covers a broad range of problems and provides 
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doctors with an accurate analysis of any disease, helping them treat them better, thus resulting in 

better medical decisions. It is noteworthy that the number of papers published on a wide variety of 

applications of deep learning in medical image analysis48 grew rapidly between 2015 and 2017. The 

most widely used type of deep learning model for medical image analysis is convolutional neural 

networks (CNNs). Deep learning can contribute to a range of canonical tasks in medical image 

analysis: classification, detection, segmentation, registration, retrieval, image generation and 

enhancement. For example, using deep-learning models trained on patient data consisting of retinal 

fundus images, it is now possible to predict cardiovascular risk factors not previously thought to be 

present or quantifiable in retinal images, such as age, gender, smoking status, systolic blood pressure 

and major adverse cardiac events49. Deep learning can more directly outperform an expert eye in the 

detection of pathologies during breast, liver, and lung radiological exams. As X-ray images provide 

huge amounts of data, CNNs can rise to the challenge of identifying very small regions in images 

depicting anomalies, such as nodules and masses that might represent cancers. Compared to highly 

trained dermatologists, deep neural networks also obtained similar diagnostic accuracy in identifying 

several types of skin cancers but it involved a huge reliably annotated image database which is not 

currently available for wounds50.

Image segmentation is one of the first areas in which deep learning displays promising 

contributions to medical image analysis and some pioneering studies have recently investigated this 

approach (Table 1). As deep learning requires a massive amount of training data, which is a real 

problem for wound images captured in the patient room, several strategies have been tested to 

overcome it: 

One solution is to split large images into small ones to expand the size of the database. 

Geometrical transformations such as scaling, translations, rotations, flipping, elastic deformations or 

color space changes can also be made to generate a lot of sub-images. In a recent study51, (Fig.8) 

only 22 images of pressure injuries were used for tissue classification (granulation, slough, and 

necrosis). The method involved using CNN on a large number of small dataset images to perform 

optimized segmentation. The training and test images had a standard resolution but a pre-processing 

step created a set of small sub-images which were used as input for the CNN network which achieved 

an overall average classification accuracy of 92%.
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 Another solution is to pre-train the network on a very large scale generic image database 

before training it on a smaller one dedicated to the application. A two-tier transfer learning method was 

applied by training a fully CNN on larger datasets of images and using it as pre-trained model for the 

automated segmentation of diabetic foot ulcers52. A dataset of 705 images was constituted, including 

600 diabetic foot and 105 healthy foot images. The surrounding skin was also considered as it is an 

important indicator to assess the ulcer's progress. The specificity value for ulcer tissue was around 

98%.

Expanding the training sample by geometrical transformation does not account for variations 

resulting from different imaging protocols and lesion specificities. So, a third solution takes advantage 

of a particular class of networks called generative adversarial networks (GAN). Composed of a 

generative model G and a discriminator model D, they have the ability to explore and discover the 

underlying structure of the training data and learn to generate new realistic images for network training 

using the G model. This is particularly interesting for wound imaging where data scarcity and patient 

privacy are important concerns. The discriminator D can be seen as a regularizer to ensure that the 

synthesized images are valid53. This approach has been tested for unconditional dermoscopy image 

synthesis prior to skin tissue classification54.

One interesting result is that while CNN outperforms classical machine learning for wound 

segmentation and even feature extraction, SVM should be preferred for the next step of tissue 

classification. For example, the classification was a two-step process: AlexNet as a pre-trained 

network for feature extraction and SVM with a linear kernel for tissue classification55. The dataset of 

wound tissues consisted of 350 images labelled into 7 types.  Current wound segmentation methods 

assume that there are only 3 tissue types (Necrotic, Sloughy, and Granulation) present at the wound 

bed, but adding other tissues (healthy granulating, unhealthy granulating, hyper granulating, infected, 

and epithelial) refines the classification. Using the pre-trained DNN AlexNet as feature extractor 

resulted in better classification accuracy compared to conventional features (86.4% as opposed to 

79.66%). Similarly, (Fig.9) a wound segmentation technique was developed56, based on a CNN model 

whose features were then used in infection detection via SVM classifiers and in the healing prediction 

process via Gaussian process regression. For wound segmentation, CNN achieved better accuracy 

compared to the SVM classifier (95% as opposed to 77.6%), whereas for wound infection detection, 

the SVM classifier trained with CNN features achieved a total accuracy of 84.7%. In fact, CNN should 
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involve traditional image processing in the image processing workflow, for instance for environmental 

background removal in preprocessing step and semantic correction in a post-processing step57.

Wound Image Management 

Image databases 

In the field of medical imaging, while a number of open access datasets are available, most of 

them are related to radiology (X-rays, MRI, PET, CT …) and not wound imaging. However, such 

databases would be valuable for research especially when machine learning and artificial intelligence 

are involved but also to enable the comparison of algorithm efficiency from concurrent research teams 

through challenges or simply for publication reports. In a scientific study, a research team works on its 

own image database and so it is difficult to compare algorithm performance. Moreover, the quality of 

the ground truth cannot be checked by other teams.

There are several reasons for this: firstly, wound images are difficult to obtain as they are 

taken at the bedside (it is not pleasant for the patient to face a camera with such a handicap and 

taking pictures is often only possible when the dressing is changed by the nurse); secondly, as these 

images are difficult to obtain, researchers are tempted to reserve their exploitation to their own group; 

thirdly, there is a lack of standardization in the protocols for wound image capture: lighting control, 

points of view and centring,  scale factor, colour constancy, wound history, patients' medical records, 

etc. are all features that can vary from one study to another. All these points should be addressed. Not 

only are wound images already difficult to find, but obtaining series of images covering a wound 

history from its inception to healing is nearly impossible.

Some wound images can nevertheless be retrieved from the Medetec wound database58. It 

contains free stock images of all types of open wounds such as venous leg ulcers, arterial leg ulcers,  

pressure ulcers, malignant wounds, dehisced wounds resulting from surgical wound infection, skin or 

microvascular changes associated with diabetes, diabetic ulcers, ischaemic wounds regularly 

encountered by a wound care practitioner. A complementary database named Medetec Surgical 

Dressings Database contains stock images of surgical dressings and other types of wound dressings 

such as hydrogel dressings, hydrocolloid dressings, alginate dressings, as well carbon dressings or 
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those containing silver or other forms of antimicrobial or antibacterial agents used to promote wound 

healing.

Computer aided wound monitoring 

At the beginning, a precise wound assessment is a prerequisite for wound monitoring. Many  

components of the assessment should  be included in weekly documentation through a nurse’s 

narrative note or a wound assessment chart: wound location, aetiology, classification or stage, size of 

wound (length, width, and depth), amount of wound tunnelling and undermining, type of tissue and 

structures observed in the wound bed, amount of exudates, state of the surrounding skin and wound 

margins, signs and symptoms of wound infections, individual’s pain level, patient’s medical factors 

which could delay healing and treatment objectives. 

Clinicians, when tracking the recovery of healing wounds, must have a standard procedure for 

recording the wound’s progress throughout the various healing stages. The two major procedures for 

wound assessment are the PUSH and BWAT tools. The Pressure Ulcer Scale for Healing (PUSH) tool 

for standardized wound measurement, developed by the National Pressure Ulcer Advisory Panel, 

indicates whether a wound is worsening or improving over time. The sum of each of the 3 sub-scores 

(surface area, exudate amount and tissue type) comprises the total PUSH score which is recorded 

and used to track healing. Similarly, the Bates-Jensen Wound Assessment Tool (BWAT) uses the 

scoring of 13 factors to determine the state of a wound (size, depth, edges, undermining, necrotic 

tissue type, necrotic tissue amount, exudate type, exudate amount, skin color, oedema, induration, 

granulation and epithelialization).

After wound assessment, evaluation of care and a wound treatment plan can be investigated. 

Wound imaging provides only one component of a patient’s state and can obviously not determine if 

the treatment has to be changed. With the commercial devices currently available in the clinical 

environment, only global parameters such as wound dimensions and the proportion of the different 

tissues are extracted. Analysing locally and over time the distribution of the different tissues and the 

evolution of the 3D surface could improve understanding of the healing process and diagnosis. The 

accumulation of a great number of wound healing histories including all the wound assessment 

components could feed machine learning algorithms to assist the clinician in treatment decision
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Wound monitoring quality can be significantly improved when the wound imaging device is linked to 

a data management tool. For example, the WoundZoom tablet59, through its Web portal, helps collate 

patient information and can be easily integrated with a hospital’s electronic health records, which is 

vital to creating a seamless digital network and eliminating double documentation. Data can be 

exchanged between hospitals or between patients at home and clinicians. Several clinical centres 

have experimented the benefits of telemedicine for skin pathology diagnosis or monitoring the wound 

therapy. For this reason, it is relevant to collaborate with pioneers in telemedicine environments60. 

Currently, images are shared through networks with other hospitals or patients at home and 

videoconferencing is supported but no image processing apart from data compression has been 

applied on the captured images. With the development of mobile health, patients with chronic wounds 

who need the evaluation and assessment of a wound care specialist can take photographs of the 

wounds with a digital camera or smartphone and send them via the internet to the wound care 

specialist. These digital photographs allow the expert to diagnose and evaluate the chronic wounds on 

a periodic basis. Nevertheless, it is necessary to be aware of a degraded reliability when performing 

wound assessment using mobile images61.

Smartphone applications 

Digital cameras are tending to be replaced by smartphones for image capture, as these low 

cost and familiar devices now support powerful embedded processing and inherent data transmission 

capabilities. A smartphone is not as reliable as a high-grade medical imaging device but it is the 

instrument of choice for mobile health62-63. The range of applications is also extended by add-on or 

connected sensors. 

 For example, smartphones are used for acuity screening in rural areas. Moreover, retina health can 

be monitored by plugging a small portable ophtalmoscope for macula and optic nerve illumination into 

the smartphone64. In orthodontics, it is now possible to use mouth pictures taken at home by the 

patient him/herself, which are then uploaded and processed to analyse tooth movements65. A lot of 

sensors are embedded in a smartphone and have been used for medical applications such as patient 

tracking at all times with GPS to deal with the risk of wandering or patients’ balance monitoring using 

the phone’s accelerometer. 
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Smartphones or tablets are indeed promising tools for standard wound monitoring at the 

patient's bedside in hospital or at home66-67-68. It is clear that sophisticated equipment could enable 

more accurate ulcer detection or assessment than a smartphone but none of it is designed for mobile 

health applications (mHealth). So, the challenge is to embed in a smartphone the essential features 

required by the nurse to rapidly assess an ulcer, characterize its evolution, transfer measurements to 

the hospital data management system and obtain therapeutic indications.

Wound management

With the development of eHealth, smartphones and tablets are appropriate tools for wound 

management when mobile and connected devices are looked for. For the nurse responsible for wound 

care, it becomes a personal organizer and secretary.  Several software tools have been developed to 

simplify wound management. 

The smartphone can replace paper-based charting with electronic charting for chronic 

wounds. It facilitates telehealth with data sharing and data transfer between multiple healthcare 

providers, allowing for more timely consultation and reducing the need for patients with mobility 

difficulties to attend consultations in person69.

Wound treatment, team communication and quality reporting can be simplified if clinical data and 

images are captured via a handheld device at the bedside. Clinically validated tools such as the 

Braden scale for predicting pressure ulcer risk and the PUSH tool for monitoring wound healing can be 

integrated in a bedside wound management and risk prevention system. Patients are sorted by overall 

risk and the nurse will even be prompted to deliver patient interventions70.

An mHealth application for decision-making support in wound dressing selection has also been 

proposed, so that the nurse can be assisted at the patient’s bedside71.

Wound imaging without add-on sensors 

 To comply with the concept of mobile health (mHealth), one should ideally use nothing but a 

smartphone, excluding add-on sensors, especially if use by patients at home is intended. Some 

advanced imaging modalities are then excluded but automatic wound assessment is nevertheless 

possible.
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To obtain geometrical measurements of the wound with this limitation, several solutions were 

evaluated72. A mobile application to document chronic wounds using a smartphone was extended to 

facilitate geometrical measurements on wounds using the smartphone's integrated camera. Three 

approaches to image analysis were developed and evaluated: computing depth using autofocus data, 

a custom sensor fusion of inertial sensors and feature tracking in a video stream and a successful 

custom pinch/zoom approach.

In commercial applications for 3D reconstruction without add-on sensors, the technique is 

based on photogrammetry: the user takes a series of pictures from different viewpoints and a 3D 

coloured and textured model of the object is derived by computation using such popular applications 

as QLone73, Scandy Pro74 or Scann3D75. A video acquired with a high-tech smartphone can compete 

with a laser scanner if the wound tissue is sufficiently textured to enable dense 3D map 

reconstruction42.

For wound tissue segmentation purposes, the embedded processing power of recent 

smartphones is now sufficient to implement powerful algorithms. For example76, the smartphone can 

perform wound segmentation by applying the accelerated mean-shift method. Within the wound 

boundary, the healing status is next assessed based on a red-yellow-black color evaluation model. 

Moreover, the healing status is quantitatively assessed, based on a trend analysis of time records for 

a given patient 

Another efficient algorithm, the random forest classifier based on various color and texture features 

has been implemented on mobile devices to classify necrotic, sloughy, and granular tissues. Although 

the training phase is time consuming, the trained classifier performs fast enough to be implemented on 

a smartphone77.

Wound imaging with add-on sensors 
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A smartphone is able to perform wound 3D scanning with the emergence of software applications 

and add-on sensors. These advances are mainly driven by new face identification functions 

embedded into the smartphone but the translation to medical applications is immediate. With add-on 

sensors, the current technique available is structured light where a light pattern is projected onto the 

scene.

 For example in the Structure Sensor78 from Occipital (Fig.10 top) integrated in the 

TechMed3D medical application intended for body parts digitization, the structured light consists of an 

infrared speckled pattern which gives access to multiple custom measurements and scans exportation 

into iMed files. In the Eora 3D scanner79 a green laser line generator attached to the smartphone 

provides structured light but the part to be scanned needs to rest on a turn table to obtain a complete 

scan, so this technique is not applicable to a patient. The most accurate technique is time of flight 

(TOF) (Fig.10 center). The time it takes for the emitted light pulse to return to the sensor is measured 

to compute the depth in different directions and accurately map objects through a purely geometrical 

mesh. This technique is embedded in Vivo’s TOF 3D camera80 that will soon be available for 

smartphones, and featuring a 300,000 pixel resolution depth, which is said to be 10x the number 

existing in structured light technology. 

Compact add-on thermal sensors have also been marketed for Android and IPhone 

smartphones. For example, in the STANDUP European project38 currently in progress, thermal 

information is provided by a compact Flir one PRO (Fig.10 bottom) camera81 plugged into an Android 

smartphone. Two smartphone applications are currently being developed. The first one will be able to 

detect possible hyperthermia of the plantar foot surface and will analyze temperature variations on 

targeted regions of interest. The local temperature differential between the two plantar arches and also 

temperature variations just after a cold stress test are analysed for screening purposes. The second 

one will assess temperature, color, and 3D shape of DF ulcers over time. The integrated camera 

provides colour imaging and 3D measurements should be obtained from video capture and compared 

for evaluation to an add-on sensor plugged into the smartphone. 

 The design and adaptation of other sensors for smartphones is still in progress to overcome 

technical challenges. This is the case for optical coherence tomography technique which proved to be 

relevant for monitoring of wound healing processes in biological tissues82 and is now addressed by 

sensor manufacturers for the mHealth market83.
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DISCUSSION 

When faced with the ongoing revolution in imaging devices and software tools for wound 

assessment, one may legitimately feel somewhat bewildered. When digital cameras replaced 

traditional photography, the advantages of numerical files over printed pictures were obvious. The 

reduction in cost to make a picture was drastic and the digital file could be stored, shared and 

transferred easily and quickly. Recently, new imaging modalities have emerged at reduced costs and 

are very promising for wound care. So, which devices should reasonably equip clinical staff in the 

coming years?

 Until recently, the primary or secondary endpoints in wound research were largely based on 

time-to-closure or overall area reduction. The automatic measurement of volumetric changes and the 

progression of tissue composition have changed this situation. 3D wound scanners and tissue 

segmentation and classification software must therefore be integrated in the weekly wound 

assessment.

A major point is the need for low-cost, user-friendly imaging devices: given the high 

prevalence of wounds in hospitals, these devices need to be routine equipment for nurses, like a 

thermometer or tensiometer. Considerable time is already devoted to dressing the wound so there is 

little extra time to spend on capturing and processing images. The same criteria also apply for mobile 

health development: the patient should be able to operate the device easily.

Another essential point is the need for data exchange: the imaging device has to be connected 

with the hospital data management system. This is particularly important when several nurses take 

care sequentially of a group of patients. The constitution of large wound databases for machine 

learning purposes is also dependent on the dissemination of wound images at a very large scale as 

the efficiency of new deep learning techniques relies on the number of sample images used during the 

learning step.

The superiority of multimodal imaging tools is also relevant. Combining several wavelengths 

and 3D geometrical measurements helps to develop a more robust wound description than that 

obtained with a single sensor.
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For these reasons, tablets and smartphones are the best platforms for wound assessment at 

the bedside or at home. As more and more computing resources, imaging technology and sensors are 

embedded in these devices at reduced cost due to large scale production, they will play an increasing 

role in wound assessment. Some functions such as thermal imaging, bacterial activity or oxygen 

saturation display could be reserved for therapeutic follow-up of severe wounds; at least add-on 

sensors for smartphones can be shared easily by the clinical staff.

 The next frontier will be advanced tools for wound monitoring and treatment plan assistance. 

Optical assessment of wounds is generally limited to a static evaluation: the knowledge of wound 

history, including its geometric evolution and temporal changes in the tissues are not taken into 

account to fine tune the diagnosis, except for graphs of global parameters such as wound size or the 

proportion of each type of tissue over time, and wound history is often summed up by scores such as 

PUSH or BWAT. Taking the local changes in wound geometry and tissue distribution over the wound 

surface into account could improve analysis of the healing process and help to adapt treatment. 

In conclusion, we should not forget that optical imaging remains only one component of wound 

assessment among those listed in the clinical chart and that all the biological and health data in the 

patient's record contribute to devising an efficient treatment plan to optimize wound healing.

SUMMARY

Wound assessment no longer relies only on manual measurements as optical imaging has 

demonstrated its efficiency to measure the 3D geometry of wounds and to identify the biological status 

of tissues. However, in order to be routinely used in the clinical setting, compact, user-friendly and 

low-cost devices are required, as wound care is performed by nurses and wound prevalence is high 

among patients. Low-cost multimodal devices and advanced technology now address compact 

thermal, hyperspectral and range imaging issues. Multimodal systems will not merely add but will 

multiply benefits, for accurate and robust wound assessment. The emergence of deep learning is also 

expected to be promising for tissue analysis. 

The commercial devices available for wound care are unsurprisingly somewhat less advanced but 

the gap will be filled rapidly. In fact, the economic pressure on the health system will have a great 

impact on the solutions available in coming years and mobile health should undergo a spectacular 

development with the integration of enhanced imaging hardware and software tools in smartphones. 
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Figure legends

Wound Imaging: ready for smart assessment and monitoring

              

Figure 1: volume measurement: active vision by color stripes projection (MAVIS I) passive 

vision by dual lens stereovision (MAVIS II) 

Figure 2: 3D wound reconstruction and labelling using a simple handheld digital camera

                 

Figure 3: (left) Silhouette wound assessment device from Aranz medical (right) InSight 

device device from EKare 

Figure 4:  Diabetic Foot Ulcer, Heel - FL-image revealed both cyan fluorescing bacteria 

which is indicative of Pseudomonas aeruginosa (arrows) and red fluorescing bacteria 

MolecuLight i:X Wound Intelligence Device  

Figure 5: Snapshot NIR allows viewing oxygen saturation (StO2) levels throughout the 

wound and surrounding tissue. Kent Imaging SnapshotNIR device

Figure 6: From an infrared feet image with a smartphone equipped with add-on thermal 

sensor (left) temperature differential can be computed (center) to detect hyperthermia for 

diabetic ulcer prevention 
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Figure 7: Reproducibility test: Residual distances between 3 models generated from 

dfferent mobile cameras after ICP registration with the laser scanner reference (top left) - 

Zenteno 2017

Figure 8: Pre-processing step for database creation (top) and dataset dictionary for three 

wound tissues (bottom) - Zahia 2018

Figure 9: (from left to right) The cropped image is taken as input by the neural network- At 

the output pixel-wise probabilities of wound segment are provided in grey levels the and 

final mask is obtained by setting a threshold of 0.5 on every pixel, to compare with the 

ground truth mask displayed in the last column. Wang 2015  

Figure 10: Structure Sensor by Occipital mounted on a tablet (top)  Vivo’s TOF 3D sensor 

for smartphone (center) Flir One PRO LT thermal camera for IPhone and IPad (bottom)
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volume measurement: active vision by color stripes projection (MAVIS I) 
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volume measurement:  passive vision by dual lens stereovision (MAVIS II) 
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3D wound reconstruction and labelling using a simple handheld digital camera 
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(left) Silhouette wound assessment device from Aranz medical (right) InSight device device from EKare 
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Diabetic Foot Ulcer, Heel - FL-image revealed both cyan fluorescing bacteria which is indicative of 
Pseudomonas aeruginosa (arrows) and red fluorescing bacteria MolecuLight i:X Wound Intelligence Device   
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Snapshot NIR allows viewing oxygen saturation (StO2) levels throughout the wound and surrounding tissue. 
Kent Imaging SnapshotNIR device 
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From an infrared feet image with a smartphone equipped with add-on thermal sensor (left) temperature 
differential can be computed (center) to detect hyperthermia for diabetic ulcer prevention (right) 

Page 39 of 46

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Advances in Wound Care

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Onlyl; Not for Distribution
 

Reproducibility test: Residual distances between 3 models generated from dfferent mobile cameras after ICP 
registration with the laser scanner reference (top left) - Zenteno 2017 

Page 40 of 46

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Advances in Wound Care

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Onlyl; Not for Distribution
 

Pre-processing step for database creation (top) 
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and dataset dictionary for three wound tissues (bottom) - Zahia 2018 
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(from left to right) The cropped image is taken as input by the neural network- At the output pixel-wise 
probabilities of wound segment are provided in grey levels the and final mask is obtained by setting a 

threshold of 0.5 on every pixel, to compare with the ground truth mask displayed in the last column. Wang 
2015   
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Structure Sensor by Occipital mounted on a tablet (top)  Vivo’s TOF 3D sensor for smartphone (center) Flir 
One PRO LT thermal camera for IPhone and IPad (bottom) 
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Works Goals Methods Database Results
Sofia Zahia [2018, USA] 

Tissue classification and 

segmentation of pressure injuries 

using ConvNets 

- Segmentation of the different 

tissue types present in pressure 

injuries (granulation, slough, and 

necrotic tissues) using a small 

database 

- ConvNet (5 x 5 inputs) - 22 images 1020 x 1020 

- Patches 5 x5 - 75% for training 

set and 25% for test set 

- Accuracy = 92.01% 

- DSC = 91.38% Precision per 

class: 

- Granulation = 97.31% 

- Necrotic = 96.59% 

- Slough = 77.90% 

H. Nejati [2018, Singapore] 

Fine-grained wound tissue 

analysis using deep neural 

network

- Classification of 7 types of 

tissues (necrotic, slough, infected, 

epithelialization, healthy, 

unhealthy, hyper granulation) 

- AlexNet (227 x 227 inputs) - 

SVM (HSV, LBP, HSV+LBP) - 

Principal component analysis 

- 350 images 

- Patches 20 x 20 

- Resizing patches to 227 x 227 

3-fold cross validation: 

- AlexNet = 86.40% 

- HSV = 77.57% 

- LBP = 79.66% 

- HSV+LBP = 77.09% 

Fangzhao Li [2018 , China]

A composite model of wound 

segmentation based on traditional 

methods and deep neural 

networks

- Wound image segmentation 

framework that combines 

traditional digital image 

processing and deep learning  

methods

- FCN (MobileNet) - 950 images - Precision = 94;69%

Manu Goyal [2017, UK] 

DFUNet: CNNs for DFU 

classification 

- Novel fast CNN architecture 

called DFUNet for classification of 

ulcers and non-ulcerous skin 

which outperformed GoogLeNet 

- DFUNet 

- LeNet 

- AlexNet 

- GoogleNet 

- 292 images of patient’s foot with 

ulcer and 105 images of the 

healthy foot 

- Patches 256 x 256 - 85% for 

AUC curve: 

- DFUNet = 0.9608 

- LeNet = 0.9292 

- AlexNet = 0.9504 
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2

and AlexNets - SVM (LBP) 

- SVM (LBP+HOG) 

- SVM (LBP+HOG+colour 

descriptors) 

training set, 5% for validation set 

and 10% testing set 

- Data Augmentation (rotation, 

flipping, color spaces) 

- GoogleNet = 0.9604 

- LBP = 0.9322

 - LBP+HOG = 0.9308 

- LBP+HOG+Colour Descriptors = 

0.9430 

Manu Goyal [2017, UK] 

Fully convolutional networks for 

diabetic foot ulcer segmentation

- Automated segmentation of 

DFU and its surrounding skin by 

using fully connected networks 

- FCN-AlexNet 

- FCN-32s 

- FCN-16s

 - FCN-8s 

- 600 DFU images and 105 

healthy foot images 

- From 600 DFU images in the 

dataset, they produced 600 ROIs 

of DFU and 600 ROIs for 

surrounding skin around the DFU. 

Specificity for Ulcer:

 - FCN-AlexNet = 0.982 

- FCN-32s = 0.986 

- FCN-16s = 0.986 

- FCN-8s = 0.987 

Specificity for Surrounding skin:

- FCN-AlexNet = 0.991 

- FCN-32s = 0.989 

- FCN-16s = 0.994 

- FCN-8s = 0.993 

Changhan Wang [2015, USA] 

A unified framework for automatic 

wound segmentation and analysis 

with CNN  

- Wound segmentation for surface 

area estimation and features 

extraction

- Infection detection 

- Healing progress prediction 

- ConvNet 

- Kernel SVM 

- Gaussian Process Regression 

- 350 images 

- Patches 20 x 20 

- Resizing patches to 227 x 227 

Accuracy: 

- SVM (RGB) = 77.6% 

- ConvNet = 95% 

Table 1 Summary of deep learning studies on wound  tissue segmentation and classification
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