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1 Introduction

1.1 Medical Context

......

1.2 Motivation and Problem Statement

n recent years, the use of smartphones and imaging technology in daily clinical practice,
especially towards wound and DFU assessment has increased considerably. Clinicians
can obtain additional information about the wound characteristics from digital image
processing to improve diagnostic accuracy.

1.3 Aim and Objectives
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1.4 Thesis Contributions
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2 Background of Diabetic Foot Ulcers

2.1 Definition and Complications of Diabetes

Diabetes mellitus (DM), known as diabetes, is a serious and long-term health issue
characterized by a disorder of metabolism resulting in high levels of glucose in the blood
called hyperglycemia. In healthy individuals, blood glucose level should be in the range
of 70 and 120 milligrams per deciliter. Hyperglycemia take place when the glucose value
is greater than 140 milligrams per deciliter []. That occurs when the pancreas cannot
produce any or enough insulin or when the body cannot effectively use the insulin it
produces.

Insulin is a hormone produced by a large gland behind the stomach called pancreas
and more precisely by the beta cells. This hormone is essential for the metabolism
to transport glucose from the bloodstream into the body’s cells where the glucose is
converted to be used for energy. During digestion, all carbohydrates are broken down
into glucose in the blood. When this happens, the amount of glucose in the blood rises.
Since our body is designed to keep the level of glucose in your blood constant, beta
cells trigger the pancreas to release more insulin into the bloodstream. Insulin must
be present with the right amount to help glucose get into the cells. Once in the cells,
glucose can be converted immediately into energy or stored to be used later. As glucose
moves from the bloodstream into the cells, blood sugar levels start to drop. In people
with diabetes, without enough insulin, glucose can’t move from the bloodstream into
the cells. Consequently, blood glucose level stays high and leads to hyperglycemia.
Diabetes is one of the biggest global health emergencies of the twenty-first century

that has reached alarming levels. Nowadays, diabetes is affecting nearly half a billion
people worldwide. According to the most recent 9th edition of the International Diabetes
Federation (IDF) Diabetes Atlas report of 2019, more than 463 million people are actu-
ally living with DM, compared to 151 million in 2000 [1]. These large numbers impose
a heavy economic burden on public health that drains global healthcare budgets due to
high medical costs, productivity loss and premature mortality. Moreover, the increase in
the economic burden of this epidemic is expected to continue to grow. The World Health
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2 Background of Diabetic Foot Ulcers

Organization (WHO) is estimating that the global number of diabetes prevalence will
rise to reach 700 million by 2045. Despite the economic burden, diabetes also imposes
a significant social impact on individuals and their families due to its chronic nature.
Although diabetes has no cure, maintaining an active and healthy lifestyle can reduce
the impact of diabetes. In addition, doctors can prescribe if needed some medications
in form of drugs or injections that replace the hormone in the body to help lower blood
sugar.
There are three main categories of diabetes which include type 1, type 2, and ges-

tational. The first category occurs most frequently in children and adolescents due to
an autoimmune condition where the immune system mistakenly attacks the beta cells
in the pancreas [2]. In the second category, type 2 diabetes occurs when the pancreas
does not produce enough insulin or when cells respond poorly to the produced insulin.
It is commonly seen in adults but it is increasingly seen in adolescents with unhealthy
lifestyle and physical inactivity. The final category is gestational diabetes that occurs
only during pregnancy and it is caused by insulin resistance due to hormones produced
by the placenta [3]. In this work, we will focus only on type 2 diabetes, which is by far
the vast majority accounting for around 90 to 95% of all diabetes cases worldwide.
Over the long-term, diabetes in all forms cause serious health problems. Untreated

high blood sugar affects large and small arterial blood vessels which can damage several
body’s organs especially heart, eyes, kidneys, foot, etc. Leading to major life-threatening
complications such as cardiovascular diseases, kidney failure, blindness and foot prob-
lems.

2.2 Diabetic Foot Ulcers

Diabetic foot ulcers are the most serious complication of uncontrolled diabetes [4]. When
left untreated, can lead to subsequent infections and may end in lower limb amputation
[5]. The lifetime incidence of diabetic people that will develop foot ulcers at some
point in their lives is around 19% and 34% [6] resulting in frequent hospitalizations.
These ulcers are responsible for more admissions than any other diabetes’s complications.
DFUs management is often challenging because high glucose levels slow down the healing
process which results in prolonged stays in hospital. Consequently, a full recovery of
these lesions requires several weeks, months or even years in serious cases. Moreover,
60% of patients will develop a recurrent ulcer within three years of ulcer healing diabetic
[7]. Furthermore, foot ulcers increase medical care costs and have a high burden of
healthcare professionals and facilities. In addition, it is a source of major suffering for
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2.2 Diabetic Foot Ulcers

Figure 2.1: Usual locations of ulcers in the diabetic foot

patients, affecting their mobility and lowering quality of life.
Mostly located on areas at risk of the foot such as the bottom of the foot or along the

top and bottom of toes ( see Figure 2.1 ), these ulcers does not appear overnight. DFUs
consist of lesions in the deep tissues that occur in gradual way and have a tendency to
worsen over time if not well managed. They start small sores which gradually cause skin
breakdown and precipitate ulceration. The risk of foot ulceration increases with age,
poor glycemic control, duration of diabetes and smoking.
By far, the two primary underlying risk factors of foot ulcers are diabetic peripheral

neuropathy (DPN) and peripheral artery disease (PAD) ( see Figure 2.2 ). Peripheral
diabetic neuropathy is the most common complication of elevated blood glucose levels
over time. The global prevalence of DPN is estimated between 16% and 87% among
adults with diabetes citeidf2019. It’s characterized by a reduced or complete loss of
sensation to pain in the lower extremities due to nerve damage. The nerve damage
leads to an insensitive foot and allows minor injuries to go unnoticed which facilitate
the development of chronic ulcers if undetected at the time. Poor blood circulation
due to arterial diseases can also make it more difficult for ulcers to heal. Insufficient
blood flow increases the risk of infection and necrosis. The result is a purely painful
and ischemic foot [8]. However, most foot ulcers are of mixed etiology neuropathy and
ischemia resulting in neuroischemic ulcer. Neuropathic ulcers heal withing a period of
20 weeks while neuroischemic ones take longer and end more often with an amputation
[9].
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2 Background of Diabetic Foot Ulcers

Figure 2.2: Risk factors of diabetic foot ulcer

However, once the diabetic foot ulcer is suspected, a fast treatment and an effective
management are vital to avoid serious complications. The faster the healing is, the less
chance for an amputation. It is expected that 85% of amputations can be avoided when
an effective healing plan is adopted [10]. A delay in diagnosis results in higher morbidity
and mortality due to increased amputation rate. The key element for a successful diabetic
foot management is periodic visits to healthcare centers for a regular examination by
experienced health professionals.

2.3 DFU in clinical practice

Diabetic foot ulcers require a systematic approach to provide an optimal intervention.
Therefore, clinical assessment of ulcers is a complex process that helps to perform a
successful diagnosis and to determine the progression towards healing. Monitoring the
process of healing over time is primordial to develop a proper management plan and to
select an efficient treatment, thereby assuring quality wound care.
Knowledge and fast decision making are crucial all along wound healing process.

This process requires experienced clinicians that demonstrate high-level clinical decision-
making skills. The standard approach of DFU assessment is typically based on visual
examination. In current clinical practice, healthcare professionals often rely on visual
observation and manual measurements to judge the healing progress of the wound. For
an appropriate diagnosis, is necessary to quantify wound area variation and tissue com-
position as well [11].
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2.3 DFU in clinical practice

2.3.1 Wound Measurement

Wound measurement is therefore an integral part in the assessment process. It provides
a baseline from which clinicians can determine the progression of the ulcer according to
its physical dimension. The measurements of the wound mainly include length, width,
surface area, depth and volume. Many traditional methods exist of varying degrees of
sophistication that can be divided in three main categories:

- One-dimensional based method: It is a quick and easy way to quantify wound
perimeter that can be performed using a simple ruler or caliper. The most straightfor-
ward method consists of measuring the greatest perpendicular length and width. Then,
the clinician multiplies these two linear dimensions to obtain the surface area [12]. How-
ever, this consider that the wound has a rectangular or squared shape and does not take
into account wound irregularities [13]. Thus, the surface is usually overestimated by
44% compared the true area [14]. Another drawback is that each clinician may have his
own intuitive way of choosing the exact points to measure even for the same wound. In
addition, wounds with different shapes can still have the same dimensions, thus yielding
the same estimated areas.

- Two-dimensional based method: It refers to measuring the surface area by
tracing the ulcer boundaries onto a gridded transparent sheet placed over the wound
bed with a permanent pen [15]. Then clinicians estimate the area by counting the
number of squares within the wound edge based on the metric grid. This planimetric
method is slightly more accurate and reliable than the ruler. Furthermore, the tracing
process involves direct contact with the wound that can carry a high risk of infection
and contamination and can also be time consuming.

- Three-dimensional based method: The three-dimensional measurement of the
ulcer aims to evaluate the healing status from a volume perspective by quantifying the
volume and depth. This technique is much more complicated than estimating the surface
or perimeter. Traditionally, the volume is measured using a moldable material or saline
gel injection inside the wound cavity [16] [15]. The required volume of the used material
to fill the wound can theoretically give a good estimate of its real volume [17]. Regarding
depth, it can be estimated by inserting a sterile cotton tipped swab in the deepest part
of the wound. However, the volume measurement techniques are often complex for
practitioners to handle and can be painful for the patient.
The major disadvantage of these traditional methods is that the measurements are

subjective and imprecise. In addition, they are invasive and require direct contact with
the wound which may lead to severe infection. Furthermore, there is a need for a non-
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2 Background of Diabetic Foot Ulcers

contact and objective technique for an accurate DFU measurement.

2.3.2 Tissue Analysis

Analyzing tissue composition is necessary thorough DFU assessment. This method is
widely used in clinical settings to evaluate the condition of the wound and the healing
progress. In daily practice, clinicians quantify the proportion of each tissue within the
ulcer site in terms of percentages. This is done based on visual inspection using the
Wound Healing Continuum. It’s a color-based continuum utilizing the Black-Yellow-
Red scheme. Where each tissue corresponds to a healing stage and shows a specific
color. Most researchers divide these tissues into three main types: black necrosis, yellow
slough and red granulation.
Necrotic tissue refers to dead skin cells that appears in a dark color mainly black.

Its texture can be dry and hard or soft and wet. Necrosis in diabetes subjects lead
to severe infection which slows down the healing process. An extensive presence of
infected necrotic tissue is the main cause of lower limb amputation [18]. In most cases,
necrotic tissue should be removed to facilitate the healing of DFU. This process is called
debridement in clinical settings [19].
Slough is a yellow-colored infective tissue inside the wound bed, mostly composed

of fibrin. It generally has a moist and soft texture. The color can sometimes vary
from yellow, tan, green due to infection and hydration. A DFU typically cannot heal
effectively with the presence of sloughy cells. Therefore, a debridement is required to
allow new tissue to form and cover the wound bed [20].
Granulation tissue refers to new tissue that is created when the wound is healing

properly. Healthy granulation tissue will be light red, while unhealthy granulation will
appear in dusky red which indicate the presence of wound infection [20]. The growth of
granulation tissue indicates that the body is generating a protective layer of flesh which
is rich in small blood capillaries reflecting the red color of the tissue. A large amount of
granulation denotes that the wound is recovering successfully. The final phase of wound
healing is the appearance of a pink epithelial tissue. This tissue slowly grows over the
granulating tissue providing a protective layer over the wound surface. Once created,
the function of healthy skin is progressively restored in time.
Understanding color and texture of tissues help to establish most appropriate wound

management plan as they progress throughout the healing process. Unfortunately, clin-
icians can occasionally struggle to estimate the exact proportion of each tissue within
wound area. As with all assessment methods performed based on the naked human
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2.4 Image-Based assessment systems

Figure 2.3: The wound healing continuum (WHC) [21]

eye, there is a high risk of subjectivity [22] since such evaluation depends on the expe-
rience and expertise of the healthcare professional. It is reported that the intra- and
inter-expert variability of tissue identification is about 70% [23]. Moreover, DFUs heal
gradually, so the detection of slight changes of the ulcer is often challenging even for
experienced clinicians. Thus, tissue identification is quite challenging and difficult to
perform in clinical settings [24]. Furthermore, this method is subjective, imprecise and
expert-intensive. Hence, imaging techniques are essential to provide objective and precise
tissue identification for a more accurate diabetic foot ulcer assessment.

2.4 Image-Based assessment systems

n recent years, the use of medical imaging technology for automatic chronic wounds
assessment has increased considerably to become a common practice in clinical settings.
It changed radically wound care practices. Imaging-based assessment does not require
contact with the skin which reduce the risk of infection and contamination. Moreover,
photography is particularly useful to ensure an objective and less time-consuming as-
sessment for health professionals and patients. Following this trend, many commercial
wound care devices are often used in medical environment, we stand for Aranz Silhouette
[25], eKare Insight [26], MAVIS [27] and Wound Zoom by Stevens Point [28].
However, these medical devices are expensive and their use require a special train-

ing. Considering the emergence of low-cost smartphones, wound management by image
analysis became an attractive option for clinicians. Modern smartphones have now more
processing power and brilliant camera capabilities with high resolution. Due to advances
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2 Background of Diabetic Foot Ulcers

in miniaturization, they represent small computing devices especially with the help of
advanced mobile internet and cloud computing.
In the past years, smartphones were mostly used for data recording to feed patient

folder [29]. Nowadays, they are more often used as tracking devices to follow healing sta-
tus of chronic wounds over time. Therefore, the efficiency of treatments and the speed of
the healing process could be assessed and with the aid of clinicians more adapted therapy
could be proposed. Thus, hospital stays will be reduced as well as healthcare expenses.
Moreover, automatic assessment can help to enhance accuracy of wound assessment
while reducing inter and intra-observer variability. This is particularly important when
different healthcare practitioners take care sequentially of the same patient [30]. Clin-
icians can access to the wound healing status anywhere and anytime [31]. However,
embedded image processing methods and computer vision techniques are required to
perform automatic assessment using a smartphone.
Automated smartphone based wound care management has been of interest among the

research community during last years. Many image-based mobile applications have been
developed for automatic chronic wounds healing assessment including DFU [32]. Manuel
Dujovny [33] designed a mobile application called “MOWA” which can extract ulcer size
and wound edge dimensions. In a similar work, Hettiarachchi et al. [34] developed an
android application for wound measurement and healing monitoring. These two methods
require nurse intervention to draw manually the wound edge. In a more recent work, Yap
et al. [35] developed an application called “FootSnap” to create a standard DFU database
by capturing images of the sole of diabetic feet. Then, they extended their application
to automatic detection and localization of the ulcers [36]. Nevertheless, these apps were
developed specifically for wound measurement and detection. In another hand, Wang et
al. [37] developed a semi-automatic user interface including wound measurements and
tissue composition. Though the results showed high effectiveness and usability; their
method is user-centered. The edge of the wound requires a freehand drawing of the initial
contour by the nurse. Therefore, not a single system combines fully automatic wound
segmentation and tissue analysis. Furthermore, the development of such a system would
be rather complex with requirements to automatically detect the wound and extract the
ROI from the background, then classify the tissues inside the wound bed, in the end
produce wound measurements and the percentage of detected tissues.
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3 Literature Review

3.1 Wound Segmentation

A critical first step in the development of intelligent systems for DFU management is
wound detection and segmentation. Automatic detection of lesions in images is a key part
of diagnosis that influences the outcome of the entire assessment process. Furthermore, it
is often an important step in image-based DFU assessment pipeline. Typically, this task
aims to delineate the regions of interest from the raw image so that the subsequent ulcer
pixels are separated from the background and the other parts of the body which allows
further quantitative analysis of clinical parameters such as wound physical measurements
(perimeters, shape, area, . . . ), tissue analysis, 3D reconstruction, etc. Automatic wound
detection and segmentation has been a hot topic in the field of medical imaging for
many years. Several image processing studies have addressed wound segmentation using
different approaches.

3.1.1 Traditional Image Processing Methods

At the very beginning, researchers performed wound segmentation using a broad bunch
of traditional image processing algorithms. There exist two major segmentation ap-
proaches: edge based and region based. The main idea behind edge-based methods
is extracting the wound boundary while region-based methods aim to detect common
properties of the wound area that distinguish it from skin.

Mukherjee et al. [38] proposed a wound segmentation framework using fuzzy algo-
rithm. The RGB images were transformed into HSI (hue, saturation, and intensity)
color space and subsequently they applied the fuzzy divergence algorithm to the S chan-
nel of the images in the HIS color space for wound segmentation. Yadav et al. [39]
segmented chronic wound areas by using K-means and Fuzzy C-means clustering algo-
rithms. The experiments on a dataset of 77 images showed that Fuzzy C-means provided
better results than K-means clustering. A different approach was proposed in [40], where
the authors performed wound analysis using color segmentation by applying accelerated
mean shift algorithm. In a similar approach, Wang et al. [41] proposed a smartphone
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3 Literature Review

based wound analysis system for patients with diabetes. Ulcer segmentation were per-
formed with the accelerated mean-shift algorithm to outline the wound based on skin
color. However wound images were captured using an image capture box which was not
practical in clinical settings.
The authors in [42] presented a methodology to segment wound area using color-

based image analysis algorithms. They analyzed the relative color difference between
the wound and the surrounding skin. Their methods consist on several steps. First,
ROI is selected manually from the input images so that the wound occupies most of the
cropped image, then a rectangle is selected from the center of the wound in the ROI
that will be considered as Wound Reference (WR). After that, a polygon is drawn on
the surrounding skin without including any part of the wound. All combinations of RGB
color intensities from pixels outside this polygon are considered as Non-Wound Reference
(NWR). Next, every pixel inside the polygon is compared with the (NWR) list using pixel
color comparison algorithm (PCC) and only those pixels that have color combinations
different from the list are classified as wound pixels. This method is not suitable for
wounds that are small or nearly healed and it requires a lot of user interaction.
In 2017, Chang et al. [43] presented an interactive multi-modal system for real-time

wound assessment including multiple imaging modalities: RGB, 3D depth, thermal,
multi-spectral, and chemical sensing. The RGB images were used to segment wound
pixels from the normal skin using GrabCut algorithm. First, a bounding box surround-
ing the wound is defined then two polylines are defined one for wound region and the
second one for normal skin. The system then constructs an initial wound and back-
ground model using mean-shift. Finally, a graph partitioning algorithm calculates the
wound segmentation mask. This procedure is repeated several times until a satisfactory
segmentation is obtained. The results show promising results but at the expense of high
user interaction. In a different approach based on contour detection[44], the authors
designed a novel semi-automatic wound segmentation system. Seven segmentation al-
gorithms were compared including edge-detection, region-growing, Livewire, active con-
tours, and texture segmentation. A preprocessing step was required to reduce camera
noise and normalize image intensity. The results showed that snake provide the higher
accuracy but Livewire achieved the best performance. However, this method is highly
interactive and its performance relies on the seed point provided by the user.
Segmentation accuracy of the above methods depend on many factors. Region-based

methods depend on pixel color, texture and image intensity, while edge-based methods
depend on the initial contour or the chosen seed point. Mainly, classical segmentation
techniques are sensitive to noise and could not be applied to images with smooth tran-
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Figure 3.1: Types of Machine Learning algorithms

sitions or intensity variation, which may lead to over or under segmentation [45]. Thus,
a preprocessing step including color calibration and noise removal are highly recom-
mended. Moreover, it’s difficult to distinguish between the wound and the background
for low contrast images or between the shading of the real images. Hence, it is difficult to
obtain accurate results for wound image segmentation using traditional image processing
algorithms. In addition, these methods are time consuming, needs user interaction and
did not provide an end-to-end processing.

3.1.2 ML Based Methods

As technology advanced, researchers moved from simple image processing methods to
more advanced machine learning methods. ML is becoming an increasingly popular
approach in medical image segmentation and have already shown promising accuracy
and reliability.
Traditional ML algorithms are mainly divided into supervised and unsupervised learn-

ing (See Figure 3.1. DFU detection or wound detection in general, is usually performed
by supervised ML. From a given training set, the algorithm extracts some interesting
information from the input images corresponding to features. Most of feature extraction
algorithms focus on detecting specific image properties such as texture, color, and shape
[46]. Some popular feature descriptors include Local Binary Patterns (LBP) [47], His-
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togram of Oriented Gradients (HOG) [48], Hough transform [49] and normalized RGB,
L*u*v and HSV features using color histograms. These descriptors transform the input
image into a set of features called feature vector which correspond to the higher-level
representation of data in the given image. Then, a classifier is trained with these ex-
tracted feature vectors for classification of each input image into its corresponding label
class. In the case of DFU detection, the output class labels will be ulcer and non-ulcer.
According to Jiang et al. [50], the most popular supervised algorithm is support vector
machine (SVM) [51]. Given a set of points, a linear SVM identify the optimal hyper-
plane leaving the largest separation margin possible between two classes by regrouping
the points of the same class on the same side, while maximizing the distance of either
class.
In [52] and [53], Kolesnik et al. employ an SVM classifier to differentiate between skin

and wound tissue using combined color- and texture feature space with 9 color features
and one textural feature. The classifier was trained on a very small dataset of six wound
images using three different kernels. Radial kernel showed the best performance followed
by the polynomial and linear one. The experimental results show that the combination of
color and texture features reduces segmentation error as compared to the use of only color
features. The performance of the proposed system is too sensitive to natural brightness
variations and illumination conditions during acquisition of images. The obtained wound
boundary is not precise and does not match with manual boundary of a clinician. Thus,
even with both color and texture feature SVM does not guarantee a good boundary
around wound. To compensate this drawback, the authors [54] tested the capability
of deformable snake adjustment algorithm to refine SVM-generated wound boundary.
SVM-generated contour is given as initial contour to perform snake adjustment. Snake
refinement is only successful if the initial SVM contour lies in the vicinity of the true
wound boundary.
In 2016, Wang et al. [55] proposed a cascaded two-stage classifier to determine the

DFU boundary on images captured with a capture box with a pair of straight angled
mirrors which reflect the image back to the camera, that help to provide controlled
lighting, angle and range conditions. The two-stage classifier is trained in several steps.
First, SLIC is used to divide training images into superpixels, then significant descriptors
are extracted from these superpixels. Color, Local Dense SIFT (DSIFT) and Bag-
of-Word (BoW) features were used as descriptors in the first stage, while color and
wavelet based features were used in the second stage. The first stage aims to eliminate
irrelevant regions, a set of binary SVM classifiers are trained and applied to the extracted
superpixels to collect a set of incorrectly classified instances. Then the second stage is
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used to distinguish wound region from healthy skin by training another binary classifier
on the incorrectly classified set. Finally, wound contour was refined using Conditional
Random Field (CRF). The proposed method is novel but is limited to DFUs that are
present in the plantar foot surface and the use of the capture box is impractical in clinical
settings.
In a more recent work [56], the authors performed wound segmentation using a super-

pixel based SVM. They first perform superpixel segmentation for each input image, 100
images were divided into superpixels using SLIC to obtain a total of 47,718 superpixel
regions. Then, color and texture feature descriptors were generated form all generated
superpixels using color histogram and LBP. The extracted features were used to perform
SVM Classification in two stages for each superpixel; first one for background-skin clas-
sification and second one for wound-skin classification. Jaccard index was around 72%
for a small test set of 10 images.
In general, the current studies have performed the segmentation task by extracting

manually different features from wound images using texture and color descriptors fol-
lowed by traditional ML algorithms such as SVM classifiers to categorize skin patches
into ulcer and non-ulcer. Nevertheless, these methods have several drawbacks. Firstly,
it is necessary to choose which features are important and best describe different classes
in the given images. As the number of classes to classify increases, feature extraction
becomes more and more unwieldy. Secondly, the handcrafted features can greatly be
influenced by lighting conditions, illumination, image resolution and also skin shape and
shades. In most cases, a color correction step is required to reduce color effects due
to uncontrolled lighting conditions. Color calibration is often performed by inserting a
color pattern in the field of view during acquisitions. Moreover, choosing an appropriate
set of hyperparameters is crucial for machine learning models accuracy. This process
involves a careful fine-tuning of the parameters, a domain expert has to step in and make
the necessary adjustments which make them hard to implement in clinical settings. In
practical terms, although their performance, basic ML methods are not robust enough
due to their reliance on the handcrafted features with certain assumptions. Furthermore,
an accurate segmentation cannot be achieved automatically using traditional machine
learning approaches.

3.1.3 DL Based Methods

A more recent subset of ML known as Deep Learning (DL) has introduced the concept
of end-to-end learning. DL is considered as the new backbone of artificial intelligence
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Figure 3.2: Comparison of ML workflow (a) against DL workflow (b)

that fuels all sorts of computer vision tasks that span across a wide range of fields.

DL models design is inspired by the functioning of the human brain providing more
meaningful and powerful features. They use many artificial neurons, these neurons are
connected with each other to form a layered structure called an "artificial neural network”
that can learn and make accurate decisions on its own without any human intervention.
In DL, feature engineering is done automatically and merged with the classification pro-
cedure. Thereby, DL changed dramatically the workflow of ML as shown in Figure 3.2.
From a given dataset, DL model automatically discover the most salient and descriptive
features of different classes in each input image throughout an iterative training process.
Moreover, contrary to traditional ML algorithms which tend to be domain specific, DL
has superior flexibility since CNN models can be re-trained using a custom dataset for
any other task [57]. All these breakthroughs have led to higher performance compared to
the traditional ML methods in various computer vision tasks such as image classification,
semantic segmentation, object detection and Localization research fields. Specifically,
with enhancements in device capabilities and the increase in computing capabilities us-
ing GPUs and cloud computing, as well as the availability of large public databases with
a humongous amount of images for training neural networks like ImageNet [58]. More
details about DL functioning as well as all different architectures are given in the next
chapter.

The development of a such powerful algorithms had a tremendous influence in the
medical field because of their accuracy and flexibility. After the success of deep learning
in many real-world applications such as image classification, facial recognition, object
detection and tracking, Natural language processing, etc. It is currently gaining a lot of
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Figure 3.3: Breakdown of the papers included in
this survey in year of publication Figure 3.4: task addressed and application area

attention from medical imaging research community. A large number of recent review
papers dedicated to deep learning application to medical image analysis were published
[59], [60], [61], [62], [63], [64], [65]. Figure 3.3 depicts the rapid surge of interest in deep
learning during recent years in terms of the number of papers published in the field of
biomedical research that increased more than threefold in 2016 and 2017 compared to
2015. DL have yielded exciting solutions with outstanding performance for biomedical
image analysis in various applications such as tumor segmentation, automatic lesion
detection, classification of lung diseases, etc. DL models are ideally suited for medical
image classification, segmentation, registration and object detection but the segmenta-
tion of organs and other substructures was one of the first areas in which deep learning
made a major contribution to medical image analysis as shown in Figure 3.4.
Recently, DL has been widely implemented in the medical area to assist DFU and

wound diagnosis. In literature, there are three common tasks for DFU image-based in-
spection using DL: Classification, detection and segmentation as illustrated in Figure 3.5.
Ulcer segmentation remains challenging, it combines the challenges of object detection
and segmentation.

3.1.3.1 DFU Classification

Several recent studies have been conducted to classify DFU images. Goyal et al [67] im-
plemented a novel fast CNN architecture for DFU classification named as DFUNet. Two
classes DFU and healthy skin have been assessed using a small training database of 397
images. Due to the limited size of their training set, the images were cropped to 256x256
patches, then they used data augmentation techniques including rotation, flipping, con-
trast enhancement and random scaling. The number of patches has increased by 15 times
resulting in a total of 22605 patches. The proposed DFUNet is a 14 layers architecture
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Figure 3.5: Examples of three common tasks for DFU image analysis using DL [66]

split into three main sections: the initialization layers inspired by GoogLeNet, parallel
convolution layers for effective DFU discrimination, fully-connected layers and output
classifier. DFUNet outperformed GoogleNet and AlexNet with a F-score of 93%. Some
other studies have been carried out in literature to perform the classification task in
chronic wound images. For instance, the following works were conducted on CNN-based
classification into more than two Types. Shenoy et al. [68] proposed a CNNs method to
classify wound images into nine different classes. The authors created a modified version
of VGG16 network named WoundNet. The final network is the average of the outcomes
from three individual WoundNets. This ensemble is called Deepwound. A dataset of
1335 wound images were pre-processed and augmented. Besides, a mobile application
was designed to assist physicians and patients during wound healing evaluation. In a
more recent work [69], the authors addressed the classification of wound images into mul-
tiple classes based on the type of the wound. A patch classifier with fine-tuned AlexNet
architecture was designed to efficiently classify the wound patches.
Nevertheless, among the biggest limitations of DL based models for wound classifi-

cation is that a large number of training samples is required for appropriate training
to attain a good performance. A requirement that is costly and difficult to satisfy in
the medical field. To address the issue of lack of training data for DFU classification,
other studies adopted hybrid approaches. These approaches combine traditional ML
and deep learning and take advantages of both methodologies. DL methods can extract
relevant features effectively without any expert intervention. Meanwhile, ML methods
can perform the classification task from the extracted features without large amount of
data. The fusion of these two techniques offers a better performance on small datasets
in comparison with DNNs.
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Wang et al. [70] developed new ConvNet architecture to perform wound infection
detection. The network was trained on 650 images from the New York University (NYU)
database. Learned ConvNet features were used to fed an SVM classifier. Combined SVM
classifier trained with CNN features achieved a total accuracy of 84.7%. Goyal et al. [71]
used an ensemble CNN approach for combining the outputs of three well known deep
networks (ResNet50, InceptionV3, and InceptionResNetV2) and fed it into an SVM
for classification. 1459 DFU images were classified into infection or non-infection, and
ischemia or non-ischemia classes. Traditional ML methods were compared to DNNs and
ensemble CNN. Deep learning-based methods showed a better performance than the
traditional classifiers. Furthermore, hybrid ensemble CNN reached the best performance
with the accuracy values of 90% for ischemia and 73% for infection predictions. A
recent study by Alzubaidi et al. [72] introduced a novel DNN called DFU-QUTNet for
automatic classification of DFUs image patches into normal versus abnormal skin. The
proposed network is designed based on the idea of increasing the width of the network
while keeping the depth. To enhance the performance of their method, they cropped
the ROI from 754 foot images to 224x224 patches to collect a total of 1609 patches
including both classes. The number of training samples was multiplied by 13 using data
augmentation transformations like flipping, rotating, and scaling. By combining SVM
with the features extracted by DFU-QUTNet network they achieved a F1-score of 94.5%
in classifying DFU images.

In a different approach, another study by the same authors [73] explored the benefit
of Transfer Learning (TL) as an alternative solution to improve DNNs accuracy. They
adopted a Dataset of 1200 DFU images that were cropped to 224x224 ROI to get a total
number of 1477 patches including normal and abnormal skin. The main idea of transfer
learning to use a model trained on a large dataset and transfer its knowledge which is
basically the learning features to a smaller dataset from the same or a different domain
(See Figure: 3.6). In this study, transfer learning utilized ResNet50 architecture in order
to benefit from its object detection capabilities. Obtained results has shown that TL can
help significantly improve the performance of DL when pretrained on a similar dataset
from the same domain of the target dataset.

Seminal works on DFU classification has been primarily based on patch-wise image
classification to benefit from the large number of extracted patches to boost the number
of samples in datasets. However, the extracted patches do not provide enough insight
about the segmentation task.
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Figure 3.6: The concept of the transfer learning : a neural network is pre-trained on ImageNet
dataset and subsequently trained on CWs images for abnormal skin classification.

3.1.3.2 DFU Localization

A series of recent studies has investigated wound and DFU localization using Deep Learn-
ing. Goyal et al. [36] performed real-time DFU localization using several deep learning
networks for object detection: SSD with MobileNet backbone, SSD with InceptionV2,
Faster R-CNN with InceptionV2 and R-FCN with Resnet 101. A large database of 1775
DFU images was considered in this study. Faster R-CNN with InceptionV2 backbone
produced the most accurate results. No other evaluation metric was presented for ulcer
detection on their dataset. Two studies looked at uses of YOLO for automatic detection
and localization of diabetic wounds. Anisuzzaman et al. [74] presented a mobile wound
detection method using YOLOv3. A lighter version of YOLOv3 named tiny-YOLOv3
has been used to turn the model into an iOS mobile application. They used AZH
database with a total of 1,010 wound images including three types of ulcers: Diabetic
foot ulcer, Pressure Ulcer and Venous Ulcer. Additionally, different data augmentation
techniques have been considered to increase the number of images on the training set
which results in a total of 4,050 image data. Prediction results on 52 test images show
that YOLOv3 gives significantly better results compared to SSD model with a mAP
value of 93.9%. Similarly, in [75] YOLOv2 with transfer learning was adopted to per-
form DFU detection. The model was designed using a shuffleNet as backbone of the
YOLOv2. Experimental results proved that a combination of shuffleNet and YOLOv2
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Figure 3.7: Samples of experts annotations from DFUC dataset

achieved better performance with a maximum localization scores of 0.94 and 0.95 instead
of 0.75 and 0.86 for classical YOLOv2 model.

Recently, the emergence of the new DFUC database [76] have significantly promoted
the proliferation of experimental practices in the field of automatic DFU localization.
DFUC is a result of collaborative work between Manchester Metropolitan University and
Lancashire Teaching Hospital and the Manchester University NHS Foundation Trust held
in conjunction with the MICCAI 2020 conference. This challenge aims to improve the
accuracy of DFU detection in real-world settings. This database consists of 4,000 images
including DFU and other foot conditions. All images were annotated with the location
of wounds using xmin, ymin, xmax and ymax coordinates as illustrated in Figure 3.7.

Several research papers were motivated by the Grand Challenge DFUC 2020. This
review paper [77] presents a comprehensive comparison and evaluation of recent DL
networks for object detection: Faster R-CNN, three variants of Faster R-CNN, YOLOv3,
YOLOv5, EfficientDet and a new Cascade Attention Network on 2000 images from
DFUC. All these methods required data augmentation to increase the number of training
images. The best performance was obtained by the variant of Faster R-CNN using
Deformable Convolution with an F1-Score of 74,34%. Cassidy et al. [76] compared
three popular deep learning object detection networks: Faster R-CNN, YOLOv5 and
EfficientDet. All networks performed the same but EfficientDet shows a better trade-
off between recall and precision, which yields the best F1-Score. The authors in [78]
proposed an adapted version of Faster R-CNN for DFU detection. The proposed network
is a standard Faster R-CNN but with ResNet-50 as backbone and an IoU sample range
of [0:0; 0:5) for negative ROIs. Additionally, 100 total ROIs were used for suggestion,
12 anchors including a scale of 64x64 and data augmentation techniques. Faster R-
CNN for DFU detection improved metrics when compared to standard Faster R-CNN
to achieve a mAP of 91.4% and F1-score of94.8%. Finally, in the most recent work of
Goyal [79], the authors evaluated the performance of EfficientDet to detect DFU in the
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DFUC2020 challenge dataset. They utilized the pre-trained weights of networks trained
on the MS-COCO dataset, which consists of more than 80,000 images of 90 classes.
They further refined the EfficientDet architectures with a score threshold of 0.5 and
removed overlapping bounding boxes to minimize the number of false positive and false
negative predictions. Color constancy algorithm was applied to cope with noise and
lighting effects. Common types of data augmentation techniques were used to augment
the DFUC database. However, none quantitative results are presented nor discussed in
the paper.
Although results appear consistent in these prior works, the obtained metrics are not

entirely satisfactory especially with the use a such big training set also considering that
all methods applied data augmentation to increase even more the training set. The
tested networks still struggle to differentiate wounds from other skin conditions.

3.1.3.3 DFU Segmentation

Most early studies as well as current work of DFU segmentation are based on a semantic
segmentation approach using Fully Convolution Neural Networks (FCNs). Goyal [66]
addressed automated segmentation of DFU and its surrounding skin by training the
main architecture of FCNs (FCN-AlexNet, FCN32, FCN16 and FCN8) on a dataset
of 705 images including 600 of DFU images. Experimental results revealed that FCN-
16s performed the best compared to the other FCN architectures with a dice score of
79.4% for ulcer region and 85.1% for surrounding skin. A system based on MobileNet
has been developed by li et al. in [80]. They used 950 wound images collected from
the Internet and the hospital. Therefore, a preprocessing step was required to remove
manually the background from the images using traditional methods based on watershed
and dynamic threshold to improve the quality of the network. This step aims to extract
the couple skin-wound from the background in order to simplify the segmentation task
and to highlight the wound features. The obtained IoU index was of 85%. While
another system by Wang et al. [81] performed fully automatic wound segmentation
MobileNetsV2. Segmentation masks were filled to improve the true positive rate using
connected component labelling (CCL). The network was trained on 5000 images with
corresponding annotation masks after a data augmentation of 1109 DFU images. The
proposed framework shows high efficiency and accuracy in wound image segmentation.
Another state-of-the-art semantic segmentation network is the fully convolutional net-

work U-net. U-net is widely used in biomedical image segmentation and shows surprising
results on small datasets. Several studies have investigated the robustness of U-net in
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comparison to other FCNs. Cui et al. [82] found that a U-Net trained on 392 images
can outperform a patch-based CNN trained on 4500 patches. However, the downside of
this method is the requirement of a preprocessing step that includes artifacts removal
and background removal performed by the GrabCut tool. In this study [83], they inves-
tigated ulcers segmentation through Mask-RCNN model which is an extension of Faster
RCNN and compare it to U-net using a small dataset of 400 ulcer. An offline data aug-
mentation step was considered to increase the size of the training dataset. Mask-RCNN
with ResNet-101 as backbone the highest accuracy with an average precision of 50.84%
which is considered as a very low performance.
In a study conducted by Zahia et al. [84], the authors presented a novel approach

for automatic wound segmentation in pressure injuries images by combining DL based
segmentation and 3D mesh of the wound. A Mask RCNN was trained on 210 2D wound
images to get the external wound boundaries. Then, a segmentation of the wound in
the 3D mesh was obtained by matching 2D and 3D views. Experimental results show
that the proposed method achieved very close results while comparing physical wound
measurements from the obtained segmentation masks to those retrieved by clinicians,
but even so segmentation precision was solely 87%.
A comprehensive comparison among three DL-based models for semantic segmentation

(FCN, U-Net and DeepLabV3) and Associative Hierarchical Random Fields (AHRF) for
segmenting wound images [85]. Various metrics were considered in this review including
DICE score, inference time, amount of training data etc. They found that for small
datasets AHRF achieved good accuracy for small databases. In contrast, FCN, U-Net
and DeepLabV3 are more accurate than AHRF for larger databases.
Most papers, perform a post-processing step after wound segmentation. This step

aims to refine the segmentation result for more natural output. Some of the used post-
processing methods are noise removal, edge softening and morphological operations like
hole filling or area opening and closing by sequential dilation and erosion.

3.2 Tissue Classification

In addition to wound segmentation, tissue classification and characterization have been
the subject of several studies on wound image analysis. This approach consists of classi-
fying the distinct tissues withing the wound bed so that exact proportion of each tissue
can be quantitatively estimated. Different authors have proposed various classification
methods considering three main types of tissues (slough, granulation and necrosis) in-
spired by the red–yellow–black color evaluation model proposed by Arnqvist et al. [86].
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Figure 3.8: Examples of tissue types in DFU images

Where, each color represents a different phase on the continuum of the wound healing
process. Overall, granulation is red tissue that is healing properly, slough is yellow wet
tissue that accumulates on the wound surface, and finally necrosis is black tissue that
has died 3.8 [31].

3.2.1 Traditional Image Processing Methods

Based on several reviews of the current literature [87], [32] and [31], a few studies have
addressed tissue classification using traditional image processing methods. Tissue iden-
tification is very complex even for the most experienced clinicians, estimating the exact
percentage of each tissue can be very challenging with the presence of multiple types
of tissues mixed together. Mostly, researchers focused on traditional image processing
methods using color-based techniques with color histograms.
Choosing the most appropriate color space is primordial to achieve the best perfor-

mance for color-based tissue analysis. RGB color space is known to be the most com-
monly used color representation system by researchers. Typically, images captured by a
digital camera or smartphone are saved by default in RGB color space where R, G and
B are considered as the primary colors of light. However, the value of each component
strongly depends on the light intensity making this color space not perceptually uniform.
For instance, two colors that appear visually close may be more separated in the RGB
color space than two other colors that appear distant for the human eye [88]. Thus,
RGB color representation is not the best for color analysis of wounds tissues.
An alternative is to convert the images from RGB model to a more suitable color space.

Numerous considered studies used HSV (H: hue, S: saturation, V: value) or HSI (H: hue,
S: saturation, I: intensity) color representation model that is much close to the way
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humans perceive colors. In fact, “H” represents the pure color in the image, “S” is the
degree of dilution of pure color by white light and obviously “I” is the intensity of light;
which provides a most pronounced contrast discriminating between tissues. Calculation
of probability map was used by Ahmad Fauzi et al. [89] for tissue separation based
on distance in modified HSV space. In an early work, Perez et al. [90] performed
tissue segmentation in leg ulcer images by analyzing the red, green, blue, saturation and
intensity channels of the images. While, Delode et al. [91] performed tissue identification
using a color conversion from RGB to HSV, which allowed them to detect black, red and
yellow pixels corresponding to the different tissues inside withing the wound area. Some
other color spaces such as CIE Lab, YDbDr and YCbCr have also been successfully used
by researchers for color based wound analysis.

3.2.2 ML Based Methods

Machine learning methods have been widely applied by researchers to tissue segmenta-
tion problems in wound images. One of the first studies dealing with tissue classification
using ML methods was carried out by Wannous et al. [92]. The authors employed a
multi-view strategy based on an SVM to classify the tissues into granulation, slough
and necrosis. Wound images were taken with a digital camera according to a specific
protocol integrating several points of views for each single wound and a Macbeth color
pattern was included for color correction. They selected 20 most relevant descriptors
including color and texture that were used as input of the SVM classifier. The single
view classification labels were mapped and merged into the multi-view 3D model [93].
The authors reported that the multiview strategy using the 3-D model help to enhance
repeatability and robustness for tissue classification. In [94] and [23], the same author
performed segmentation-driven classification approach using color and texture features
and SVM classifier. Before feature extraction, three techniques (mean shift, JSEG and
CSC) were compared to perform tissue segmentation of wound images. Experimental
results showed that the segmentation-driven classification approach is more suitable than
a pixel-based approach.
Mukherjee et al. [38] used a set of color and textural features to describe granulation,

necrotic, and slough tissues. For every segmented wound region, 45 color channels were
used for color feature extraction including 15 color spaces with considering the three-
color components in each color space. Next, texture features were extracted from each
of the 45 color channels using Shannon’s entropy, local contrast features and local binary
pattern. Finally, Bayesian classifier and SVM classifiers with various kernels were trained
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for wound tissue classification. Their experiments on 74 wound images showed that SVM
with 3rd order polynomial kernel provided the best results with an overall accuracy of
86.13%.
In [41] and [95], the authors applied a color segmentation algorithm by applying

K-means clustering algorithm from CIE Lab color features after outlining the wound
boundary with an accelerated mean-shift algorithm. Wang et al. reported that tissue
classification is a hard task in real images due to the complexity of skin color and texture.
For instance, many dark red granulation pixels were misclassified and considered as
necrosis instead of granulation, while dark yellow slough pixels considered as granulation
instead of slough tissue. In a similar approach by Patel et al. [96], texture-based features
were extracted with local contrast features and local binary pattern. While color features
were extracted with mean, skewness, standard deviation, kurtosis and variance. All these
features were finally used for tissue classification purpose with K-means. In a more
recent work [43], tissue classification is performed using color histogram features from
RGB images. First, a mean shift segmentation is performed on the wound tissue pixels
to obtain a set of fine-grained regions. Then, color histogram features are extracted from
each region. A label with one of the predefined tissue types is set to each region using a
random forest classifier. However, none quantitative results are presented nor discussed
in these papers.
A hybrid system based on neural networks and Bayesian classifiers for automatic

tissue identification in five different types namely: skin, healing, granulation, slough and
necrosis has been proposed by Veredas et al. [97]. An adaptive mean shift procedure and
a region-growing strategy were applied for ROI segmentation from wound images. Multi-
layer neural network followed by a Bayesian classifier were performed to classify color
and texture patterns extracted from the segmented area. The performance of proposed
approach was about 78.7% of sensitivity and 91.5% of accuracy. In a similar research
by the same authors [98], tissue categorization was carried out using three different ML
methods namely: Neural Networks, SVM and Random Forest. The evaluation metrics
on 113 photographs showed that the high overall accuracy rates of and 92.14% and
93.66% were obtained by SVM and Random Forest respectively. While Random Forest
gives the highest metrics regarding granulation tissue, SVM gives the highest values
when detecting necrotic, slough and healing tissues.
Recently, Chakraborty et al. [29] presented an automated tissue identification scheme

after a fuzzy c-means clustering for wound segmentation from pressure and diabetic
ulcer images considering Medetec database. Then, a set of color features were extracted
from the segmented areas based on color intensity value using the Db channel in YDbDr
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color space. In this paper, Linear Discriminant Analysis (LDA), Decision Tree (DT),
Naïve Bayesian (NB) and Random Forest (RF) have been considered for comparison
for classifying tissue patterns. The RF tissue classification approach provided the best
tissue classification prediction on a total of 153 images with an overall accuracy of
93.75%. However, RF classifier performed poorly on necrosis tissue as compared to the
four extant classifiers. In a previous work [99], the same author obtained an extremely
efficient tissue classification using LDA based on three simple color features that reached
91.45% of overall accuracy regarding the three tissue types. Their method outperformed
state-of-the-art methods (K-NN, fuzzy k-NN, K-means, SVM and Bayesian).

In a different approach [100], the authors proposed a tissue identification method
based on color and texture analysis. Eleven features were considered to retrieve signifi-
cant features including color spaces, local entropy, local range, local standard deviation,
gray level co-occurrence matrix, SIFT and prior visual appearance. Next, non-negative
matrix factorization (NMF) was applied in order to select the most significant features to
reduce computation time. Tissue classification was done with the gradient boosted trees
classifier (GBT) that was trained on 377 CWs images from Medetec and national pres-
sure ulcer advisory panel website. The proposed method achieved an average accuracy
of 96%.

Several ML wound tissue classification approaches have been proposed in the litera-
ture. The first step is wound segmentation using either automatic or semi-automatic
methods. Then, an image pre-processing step is primordial for white balance estimation
and color correction so tissue classification can be more effective. Finally, tissue classi-
fication step is then performed using ML classifiers (such as: SVM, RF, NB, K-means,
etc.) by incorporating the extracted color and texture descriptors from prior segmented
wound region. The most significant limitations of the ML based tissue classification stud-
ies can be summarized into two main issues. First, wound tissues are classified based on
the selected features. Nevertheless, due to the complexity of skin color and texture of
CW tissues, features extraction is a critical step that can be very challenging in ML based
methods. Second, manual annotation of the ground truth tissues by clinical experts is
very expensive in term of time and expertise and requires an exhaustive methodology to
get significant and reliable annotations to compare the segmentation with. Therefore, as
addressed by many similar studies, manual segmentation of tissues in wound images is
prone to a high inter- and intra-observer variability. Thus, the classification performance
evaluation is not trivial and can be highly inaccurate.
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3.2.3 DL Based Methods

Recently, more sophisticated methods with deep learning have been the focus of the
research in this area. New approaches involve convolutional neural networks for clas-
sification or fully convolutional neural networks for semantic segmentation. However,
the lack of annotated wound tissue databases as mentioned before is still an ongoing
problem. Therefore, most approaches are typically performed on a patch level and af-
terwards data augmentation techniques are applied to further increase the number of
training samples.

A novel approach has been presented by Zahia et al. in [101] to handle small datasets
in DL using a new CNN architecture that was trained and tested on a small dataset of
22 pressure wound images. The main idea is to divide the images into small 5x5 square
patches to end up with 380,000 small images. These sub-images along with their ground
truth labels were fed into the proposed CNN model for training the network to classify
each input patch into one of the different tissue classes. The achieved performance
was relatively high with an overall accuracy of 92.01%. Despite the high accuracy of
their method, the system confuses some parts in the images that appears dark due
to depth with necrotic tissue and slough tissue classification still challenging with the
lowest precision rate of 77.90%. Rajathi et al. [102] presented a similar approach where
1250 varicose ulcer images were partitioned to 5x5 patches. This work consists of three
main stages: data processing to remove flash light reflection, active contour for wounded
area segmentation and a 4-layer CNN for tissue classification into four different types
(granulation, slough, necrotic and epithelial). Collected patches and their corresponding
ground truth are given as input to train the proposed CNN architecture. The proposed
approach outperformed [38] and [93] with an overall accuracy of 99.55%. but the results
were reported on a relatively small set of 5 images.

In this paper [103], the authors expanded the number of tissue types to seven instead
of three classes, namely: Necrotic, Slough, Healthy Granulation, Infected, Unhealthy
Granulation, Hyper Granulation and Epithelialization. Adding more tissue classes help
to increase tissue identification accuracy and thus to obtain higher evaluation parame-
ters. Nejati et al. proposed a hybrid deep learning approach considering a pre-trained
AlexNet architecture for feature extraction and a linear SVM for patch-level classifica-
tion. A dataset of 350 wound images was partitioned into 20x20 square patches that
were resized to 227x227 to match the input size of AlexNet. The proposed method
combining AlexNet and SVM classifier performed better than using SVM from classical
feature descriptors such as RGB, HSV color histograms and LBP texture descriptor.
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They achieved an acceptable overall accuracy of 86.40%.
Unlike existing approaches using square patches, Blanco et al. proposed a superpixel-

driven method called QTDU [104]. A superpixel is an image patch that have more
perceptual meaning than a regular square patch. In addition, pixels belonging to a
given superpixel share similar tissue properties contrary to regular patches that can
contain several tissue types. The proposed system includes three stages: ulcer segmen-
tation, tissues labeling, and wounded area quantification. A database of 217 arterial
and venous wound images were considered in this study. After superpixel segmentation,
data augmentation was applied to each superpixel, which result in 44,893 superpixels
labeled into four classes namely fibrin, granulation, necrosis, and not wound. For the
training stage, the authors used the existing CNNs ResNet and InceptionV3 while adding
six additional layers to the end of each network to deal with overfitting. Experiments
showed that QTDU with ResNet generated better results than QTDU with InceptionV3.
In addition, the proposed QTDU outperformed state-of-the-art ML approaches with an
f1-score of 97.1%.
In a completely different approach [105], Maity et al. proposed a pixel-based wound

tissue classification method, where a deep neural network classifier is trained based prior
features extracted from different tissue regions. A total of 105 features were calculated
for each pixel including color, texture, LBP, entropy, etc. Pixelbased feature extrac-
tion is implemented by running a mask window of 9×9 over each pixel of the tissue
regions. Then, the neural network training was performed based on extracted features
that achieved a very high accuracy rate of 99%. However, the authors did not give any
details about the used neural network.
Another methodology to perform data augmentation has been investigated by Phol-

berdee et al. [106]. The authors proposed a color data augmentation method based
on color mapping parameters from two camera pairs. This technique tripled the size of
training samples, they moved from 180 images from Medetec database to over 400,430
samples for training set and 291,486 samples for validation set including granulation,
slough, and necrosis tissue. The experimental results demonstrated that the proposed
color data augmentation technique greatly improved tissue classification performance.
However, the IoU index was merely 53% instead of 47%. As in Zahia et al., slough was
the most challenging tissue to be identified.
On the other hand, Garcia-Zapirain et al. presented a complex classification frame-

work with 3D convolution neural networks for pressure injuries images [107]. The pro-
posed system is based on the fusion of the following feature modalities: original image in
HIS color space, smoothed image with a pre-selected Gaussian kernel, prior appearance
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image and current appearance image using linear combinations of discrete Gaussians
(LCDG). These features are provided as inputs to the 3D DeepMedic CNN network.
The proposed 3D CNN architecture consists eleven layers with four pathways one for
each single modality. The network was trained on 193 images and reached a mean DICE
coefficient of 92% for tissue classification. In similar research by Elmogy et al., five fea-
ture modalities were used with the 3D CNN. The authors added RGB image as an input
alongside with prior model proposed in [108]. This architecture showed a similar DSC
accuracy of 92% on the same dataset. In another work by the same authors [109], four
modalities were considered; HIS image was replaced by the RGB image. The method
achieved a DSC of 93% on 100 images.
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4.1 Image acquisition

To explore the effectiveness of DFU segmentation and tissue classification using deep
learning models, a wound database has been constituted over the previous three years in
cooperation with two hospital centers, Hospital Nacional Dos de Mayo (Lima, Peru) and
the diabetology service of CHRO Hospital (Orleans, France). The images are captured
from different patients during several clinical visits with an approximative interval of two
weeks between visits. For image acquisition, we used a smartphone camera of Xiaomi
Note7 with a resolution of 1080 x 2340 and Samsung S10 with a resolution of 1440 x 3040.
Additionally, an add-on temperature sensor FlirOne pro [110] is added to the acquisition
system to capture instantly a pair of images providing both thermal and color modality.
This camera can easily be plugged into a smartphone and offers high sensitivity that
detects temperature differences down to 70 mK which can be very accurate to detect
temperature changes due to inflammation or infection. A detailed overview of the used
FliOne pro is presented in Table 4.1.

Figure 4.1: FlirOne Pro camera

Table 4.1: FlirOne pro overview
Resolution 1440 × 1080 pixels
Object Temperature Range -20°C to +400°C
Thermal sensitivity 70 mK
Accuracy 3 °C or 5%
Weight 36.5 g
Dimensions (H x W x D) 68 × 34 × 14 mm

The acquired image pairs are taken using a multiview approach, and then used to
generate a realistic 3D wound with measurement information including area, volume
and temperature. An illustration of different acquisition modalities for one patient is
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Figure 4.2: Acquisition modalities (a) Color image, (b) Multiview color modality and (c) Mul-
tiview IR modality

presented in (Figure. 4.2). Image acquisition is performed during clinical examination
when the wound is totally cleansed to minimize the effects of infection, and so the tissues
can be more visible. The acquisition protocol had to be fast and practical for clinical
settings. Thus, we a proposed a very simple acquisition protocol according to each image
modality:

- Color image modality: The acquisition protocol consists on capturing one image
of the wound under uncontrolled lighting conditions while framing the ulcer area from a
point of view as frontal as possible with a parallel orientation to the plane of the wound.

- Multiview color modality: The acquisition protocol consists on capturing a set
of images that include several points of views by moving the camera around the wound;
to the left, right, up and down.

- Multiview IR modality: Similarly, a set of images is captured from different per-
spectives. However, a preliminary requirement was to maintain a controlled environment
where the temperature is set to room temperature.

In this dataset, we excluded blurry or dark images. Additionally, 92 CW images from
ESCALE database [111] were also added to our database. Consequently, the collected
database covers all CW pathologies including diabetic foot ulcers, burns, pressure in-
juries, etc with different shapes, sizes and healing stages (See Figure. 4.3). We collected
some metadata regarding the patient’s age, sex, identity, DFU measurements, site and
the used dressing. However, this data was not considered in this work since our main
objective was to perform accurate tissue and wound segmentation.
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Figure 4.3: Sample images from our heterogeneous chronic wounds database

4.2 Expert Labelling

It is well known that accurate DL models with high prediction performance require
massive amounts of labeled data with quality annotation. Furthermore, the quality of
image annotation is an essential part of DL models training and success. Incorrect an-
notations if fed to the DL model can straightforwardly impact the network performance
and can lead to inaccurate predictions. As an important component of DL models to be
accurately trained for correct prediction, each image in the dataset must be accurately
labeled. The process of manual labelling involves expert knowledge to obtain precise
ground truth annotations. In our case, this process must be done by wound care spe-
cialists, which is time consuming and costly in term of expertise. Furthermore, manual
tissue identification is a very difficult task for clinicians since tissue distribution withing
the wound is usually irregular especially with the presence of a mixture of several tissue
types inside the same wound. Some studies like [112] and [23] demonstrate that manual
annotation of tissues in wound images by experts is prone to a high inter- and intra-
observer variability which result in different ground truths for the same wound. Thus,
some researchers developed their own annotation software. However, there is no public
data annotation tool for wound tissue annotation and using a software like Photoshop
is not practical for clinicians. So as solution, for an effective tissue annotation of the
ground truth, we developed a GUI labelling interface to help clinicians in the labeling
process with pre-segmenting the wound images using a superpixel algorithm. Then, clin-
icians can directly label the pre-segmented wound tissues. Consequently, this process
will become easier, more accurate and less time consuming.

4.2.1 Superpixels Segmentation

Many image segmentation methods have been published in the literature during the last
decades. Recently, the use of superpixel algorithms have become increasingly popular in
many computer vision and Image processing applications for segmentation and semantic
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Figure 4.4: Samples of Superpixels Segmentation from literature

labelling especially in the biomedical imaging field. Recently, superpixel algorithms have
become widely used in computer vision and Image processing application for segmenta-
tion and semantic labelling especially in the medical imaging field. First introduced by
Ren and Malik in 2003 [113], these algorithms showed the ability to provide powerful
segmentation results with high efficiency, especially in real-time vision systems.

Superpixels are the results of an image over-segmentation. The main idea behind these
algorithms is to divide the image into a large number of segments perceptually similar,
which are formed by considering similarity information according to many criteria such as
color, texture, brightness, intensity, shape, etc. These segments carry more information
about the structure of the scene than individual pixels. Additionally, they align better
with the object’s edges in the image than a regular square patches. A major advantage
associated with these algorithms include high visually meaningful segments with lower
computational complexity and less memory.
Superpixel algorithms can be broadly classified into graph-based and clustering-based

approaches. Graph-based approaches treat the segmentation as a graph-partitioning
problem where each pixel is considered as a node in the graph. While edge weights
measure the similarity between adjacent pixels and help to relate the pairs of nodes. The
most used algorithms in this category include Felzenszwalb [114] and normalized-cuts
[115]. Whereas, clustering-based approaches are mainly based on traditional clustering
techniques such as k-means for superpixel segmentation and are simpler to implement.
There are various algorithms in this category such as SLIC [116], Watershed [117], Quick-
Shift [118], etc.

4.2.2 Simple Linear Iterative Clustering (SLIC)

The Simple Linear Iterative Clustering (SLIC) is the state-of-the-art superpixel seg-
mentation algorithm proposed in 2010 by Achanta et al. [116]. SLIC performs a local
k-means clustering that generates clusters of pixels based on their proximity and color
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Figure 4.5: (a) Standard k-means searches, (b) SLIC searches within a limited region [119]

similarity in the combined five-dimensional space [l, a, b, x, y] considering the l, a, b
values of the CIELAB color space and the spatial components x and y. Unlike K-Mean
clustering method, similarity of any two pixels depends not only on color similarity but
also on spatial distance. In addition, SLIC limited the search region to a neighborhood
of 2S x 2S from each cluster center as can be seen in 4.5. Contrary to K-means where
the distance was computed between each pixel and all cluster centers in the image. This
reduced dramatically the number of distance calculation. Instead of using a simple Eu-
clidean distance in the 5-D space, the authors proposed a weighted distance measure
that combine two distances into a single measure. The proposed distance measure Ds is
defined as:

dlab =
√

((lk − li)2 + (ak − ai)2 + (bk − bi)2) (4.1)

dxy =
√

((xk − xi)2 + (yk − yi)2) (4.2)

Ds = dlab + (m
S

) ∗ dxy (4.3)

where Ds is the sum of a distance in Lab color space dlab and Euclidian distance dxy

normalized by the grid interval S. This combination results in more consistent superpixels
of the with a better adherence to the edges in the image. The key parameters for SLIC
are the number of superpixels to output K and compactness m.
First, a K number of superpixels is introduced. For an image of N pixels, the approx-

imate size of each superpixel will be N/K. To produce equally sized superpixels, the K
superpixels are sampled on a regular grid with an interval S =

√
(N/K) between each
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Figure 4.6: Samples of SLIC Segmentation with different compactness values

superpixel center. More details about superpixels repartition with SLIC algorithm can
be found in [116]. Then, the compactness of the produced superpixels can be controlled
by adjusting the parameter m in Ds. Compactness helps to balance color and space
proximity during superpixel construction. Large values of m result in important space
proximity, yielding to superpixels with more square shape. While, smaller values of m
result in non-compact superpixels that adhere better to image boundaries but with more
irregular shape. Figure 4.6 illustrates SLIC segmentation output when varying compact-
ness value. This parameter can be greatly influenced by intensity and regularity of the
boundaries in the image. In the same image, SLIC can produce smooth superpixels with
regular size in the smooth areas and more irregular superpixels in the textured areas.
However, an improved version of SLIC has been proposed in [119]. So, instead of

using the same compactness value for all superpixels in the image, this method adjusts
adaptively the compactness for each superpixel independently. This generates regular
shaped superpixels that adheres perfectly to the wound boundaries in both textured
and non-textured regions. Thus, the only parameter left to manage is the number of
superpixels K as can be seen in (Figure 4.7).

4.2.3 Annotation GUI

The proposed labelling GUI uses SLIC algorithm to automatically generate superpixel
regions without any manual outlining. So, instead of setting a label for each pixel, the
clinical expert simply has to assign a label to these pre-segmented regions to obtain at
the end a pixel-wise annotation of the wound. An illustration of the developed wound
tissue labelling software interface is presented in Figure. 4.8.
The interface is interactive and provide the user with various functionalities. First,

the user can crop the image to select the ROI. This is particularly important for high
resolution images to focus the segmentation on the wound tissues and thus reduce com-
putational time. Clinicians have control over the number of desired segments to produce
more accurate labeling. This value can be updated according to the size and the com-
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Figure 4.7: Samples of SLIC Segmentation with different numbers of superpixels

plexity of the wound. A high number of superpixels is required to segment accurately
complex or big wounds while fewer superpixels are needed for smaller or less complex
ones. The output of superpixels segmentation changes instantly in real time. Once the
segmentation is done, the user has to assign a label color for each superpixel withing
the wound. We have label buttons with a specific color for each tissue type; red for
granulation, yellow for slough, black for necrosis and pink for healing tissue or epithe-
lialization. An unknown label with white color is added to the list in case of the presence
of non-tissue superpixels inside the wound bed like bones for example and can be used
also when clinician is unable to detect precisely the tissue class. Finally, the annotation
process is done by selection the corresponding label color for each selected superpixel.
The color of the tissue changes immediately so clinicians can see the current set of labels
in real time.

Figure 4.8: Graphical interface for the expert manual labeling

Clinicians reported that this GUI is very simple and easy to use. The annotation
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process is much more accurate and less time consuming. This tool has been developed
using Python3 [120] and relies solely on open-source libraries. Therefore, it can be
adapted for any other dataset by changing only the labelling classes.

4.3 Deep Neural Networks

4.3.1 Artificial Neural networks

As we previously stated, Deep learning networks have surpassed Machine Learning ap-
proaches performance and have revolutionized several industries in the last decades.
Today, DL has a widespread adoption in our everyday life for a variety of applications
including forecast, natural language processing, fraud detection, speech recognition, com-
puter vision and is showing great promise in the biomedical image analysis field where
its precision is more and more approaching human level performance on various tasks.
However, DL is a complicated process based on artificial neural networks that has

not appeared overnight, their evolution took decades. The history of DL dates back
to more than 70 years ago when Warren McCulloch and Walter Pitts in 1943 modeled
the first computational model for neural networks with electrical circuits inspired by the
Biological Neuron of human brain [121]. Basically, a biological neuron receives a signal
as input through the dendrites, processes it in the soma and then passes the output
through the axon. In a more simplistic view, each single neuron in our brain receives
signals and produce an instantaneous response. In a similar way, the proposed artificial
neural is divided into two parts trying to mimic the working of biological neurons. The
‘g’ part similar to dendrite takes an input that can be excitatory or inhibitory then
performs an aggregation. While the ‘f’ part takes a decision based on the aggregated
value. The output is a binary value, ‘0’ if the weighted sum exceeds threshold value ‘b’

Figure 4.9: Biological neuron versus artificial neuron
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and ‘1’ otherwise. The structure of a biological neuron versus McCulloch-Pitts Neuron
is shown in Figure 4.9.
The McCulloch-Pitts Neuron indeed suffers from some limitations and has been the

subject of many critics. Yet it was the very first step towards the evolution of artificial
neural network and deep learning. The major limitations are that the model lacked
a mechanism for learning besides that weights and threshold were manually adjusted.
Additionally, only binary inputs and outputs were allowed. These limitations however
were reduced when the concept of perceptron was introduced by the psychologist Frank
Rosenblatt in 1958 [122]. Mark I Perceptron was modeled on a McCulloch-Pitts neuron
with a simple input output relationship but its originality lay in the ability to learn
the correct weights automatically through a learning process that try to minimize the
difference between desired and current output. The perceptron could also process non-
boolean inputs. Therefore, it was the first trainable neural network with a single layer.
Since that time, artificial neural networks were an active area of research and so deep
learning was born.
Although Rosenblatt’s perceptron seemed promising, it could only handle simple clas-

sification tasks for linearly separable classes. This simple single neuron model struggled
to solve more difficult problems. Another big problem was that a single-layer perceptron
cannot implement XOR logic function because the classes in XOR are not linearly sepa-
rable. This is why the concept of hidden layers was introduced in the 1980s to overcome
most issues of the Rosenblatt’s Perceptron. Adding two or more layers to the percep-
tron allow the network to learn more complicated features and thus resolve more complex
tasks. Thus, extra hidden layers of artificial neurons were added in between the input
and the output nodes which transformed a single-layer perceptron into a Multi-Layer
Perceptron (MLP). Another huge advance was the use of backpropagation to adjust the
weights during the learning process [123]. Replacing a linear activation function with a
nonlinear one such as sigmoid in an MLP could overcome the XOR problem case seen in
the case of single-layer perceptron. Since then, the MLP has attracted the scientific com-
munity and numerous architectures of artificial neural networks continue to expand in
order to solve more complex tasks related to real-world problems and so Deep Learning
has evolved gradually as computers became more advanced.
In a simplistic view, an artificial neural network (ANN) consists of layers of inter-

connected nodes where each node is a perceptron that has an associated weight and
threshold. The general structure of an ANN is shown in Figure 4.10. The input layer
provides various forms of information about input data samples, while the output layer
produces the final predicted result. In between, hidden layers represent the intermediary
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Figure 4.10: Multi-layer Perceptron

nodes where a single layer takes in a set of weighted input and produces output through.
The outputs of each layer are used to feed the neurons of the next layer. Hidden layers
identify salient features from the input data through a weight optimization process using
an activation function. This process of optimizing weights is called training.
Once the ANN is structured, the next step is to train the model for a specific task. The

algorithm starts with random initial weights. The training phase of the ANN consists
on adjusting the weights for the output layer to provide low error on the training data
and thus obtain accurate predictions on unseen data. Weights are updated after each
iteration through the neuron in the network. This process is achieved by backpropagation
learning algorithm which aims to minimize the squared error between the actual output
values and the desired output values, in an iterative manner, so the network learns and
improves. The complexity level of the ANN increases with every layer, the more hidden
layers, the more the ability of the network to learn complex features. However, larger
training datasets will be required to achieve a successful training and avoid overfitting.
The network is classified as deep neural network when the model consists on a large
number of hidden layers [124].

4.3.2 Convolutional neural networks

Convolutional neural networks (CNNs) are an extension of artificial neural networks
presented above. Among different types of deep neural networks, convolutional neural
networks are the most popular. CNNs methods have become popular in the recent
years after Alexnet was introduced by Alex Krizhevsky in 2012 [125]. The research
interest in CNNs increased ever since, more particularly for computer vision problems
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including image classification, image segmentation, object detection. They have been
also successfully applied to natural language processing, text analytics tasks and more.
CNNs are very similar to its predecessor artificial neural networks, both consist of

a sequence of layers where every layer receives input from previous layer and provides
output to the next one. However, the essential difference is that the CNN architecture
utilizes the convolution operation. Rather than using fully connected hidden layers,
CNNs consist of convolutional layers convolutional layers, pooling layers, fully connected
layers, and normalization layers. In general, a CNN contains one or more convolutional
layers, more convolutional layers mean a deeper network. In contrast to regular ANNs
where each neuron is connected to every other neuron in the previous layer, in a CNN,
only the last layers are fully connected. CNNs have the ability to maintain spatial
information of the data with a few connections between the layers. This enables CNNs
to effectively reduce the number of parameters in each layer.

Figure 4.11: A graphic representation of the typical CNN architecture

A typical CNN architecture consists on a series of convolution and pooling operations
occurring in an alternating way followed by one or more fully connected layers can be
seen in Figure 4.11. The output is softmax in the case of a multiclass classification
and sigmoid otherwise [124]. These layers can be thought as feature extractors, dimen-
sionality reduction and classification layers, respectively. For example, given an input
image and its label, the network applies the convolution layers to automatically extract
meaningful features using filters. Extracted features become progressively more complex
during the learning phase. In fact, the first convolution layer detects simple features such
us edges and lines. While the following layers merge these features to learn more complex
textures and patterns. Therefore, the result is a set of feature maps of various complex-
ity. The next step is applying pooling layers to reduce computational complexity of the
feature maps. Thus, reduce the number of parameters to learn and computational power
requirements. Each sequence of convolution layer followed by pooling layer is a convolu-
tion. The parameters of these layers are learned over several iterations through a process
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called training which aims to minimize the error between the output and ground truth
label. Finally, for classification problems a couple of fully connected layers is required
to connect the activations from the high-level features of the convolutions to the output
layer. The number of neurons in the output layer is equal to the number of classes to
be predicted.

• Convolutional layers: A convolutional layer is the main building block of CNNs
that perform convolution operations to extract high-level features from the input
data such as an image. Convolution make use of filters also known as kernels to
slice across the image, each will produce a separate activation map. Intuitively, the
result of the application of these filters is a map of activations also called feature
map or convolved features that summarizes the present features throughout the
input image. In fact, the major strength of CNNs is that they do not learn a single
filter, they learn multiple features in parallel for a given input. Convolutional
layers are not limited to the input layer but are also applied to the hidden layers
for a wholesome understanding of the input images similar to how human would.
Conventionally, the first convolutional layer allows the network to learn Low-Level
features such as lines, edge, orientation and so on to move up to high-Level features
like entire patterns as the depth of the network is increased.

Figure 4.12: Convolution operation without padding

A convolution is a linear transformation that converts all the pixels in its receptive
field into a single value. This operation involves a dot product between the con-
volution filter and the image pixels which is then summed to get one final output
value. The two key hyperparameters of convolution operation include the filter
size F and stride S. The filter size is usually smaller than the input which decrease
the image size. The filter passes over all the pixels of the image to discover spatial
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features anywhere in the image (See Figure 4.12). It moves from left to right with
a given stride value across the complete width. This process is repeated from top
to bottom with the same filter and stride value till it parses the entire image. The
resulting output of the convolutional layer is a vector O called feature map.

However, since kernels are smaller than input, a few pixels from the border of the
image might be lost when applying convolutional operation. The information on
the boundaries is not preserved as well as the information in the center of the
image. One straightforward solution to this problem is to use padding. The idea
is to add extra pixels around to the edge of the input image. Consequently, the
spatial output dimension will be equal to the input. Padding parameter is typically
set to zero so the added pixels does not have any effect with the dot product when
the filter is applied (See Figure 4.13).

Figure 4.13: Convolution operation with padding

Besides regular convolution, there are two other types: dilated convolution and
transposed convolution.

Dilated convolutions expand the receptive field of the network by inserting zero
values into convolution kernels which provide a global view rather than finer details.
Dilated convolutions are particularly used when object size is almost equal to the
size of the image. This results in faster predictions and less computation cost.
This type of convolution requires another parameter called the dilation rate which
controls the up-sampling factor by defining a spacing between the values in a
kernel. In practice, for a 3x3 kernel with a dilatation rate of 2 will result in 5x5
kernel while a dilatation rate of 3 will result in 7x7 kernel as shown in Figure 4.14.
Whereas, for a dilation rate of 1, we get the same 3x3 kernel.
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Figure 4.14: A 3x3 kernel with various dilatation rates: 1, 2 and 3 respectively

Transposed convolutions are used when output size is larger than input image. For
instance, a 2x2 image and a 3x3 kernel while the output is of 4x4 (See figure 4.15).
This type of convolution carries out a regular convolution but reverts its spatial
transformation using dilation or a zero-padding strategy [126].

Figure 4.15: Example of transposed convolution

• Pooling layer: typically applied after a convolution layer, the pooling layer is a
downsampling operation that reduce the spatial dimension of the convolved feature
map while keeping the important information. The main objective is to discard
redundant features and preserve relevant ones, and thus further reduce the number
of parameters and speed up the computational power required to process the data.
This downsampling reduces the height and width whilst keeping the depth intact.
There are several types of pooling but max-pooling is the most popular one. Max
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pooling slides a window over an input feature map resulting in a regular grid of
squares and outputs the maximum value in each pooling window and the other
values are discarded. Alike convolution, the window size and stride should be
specified. The result of a max-pooling a filter size of 2 x 2 applied with a stride
of 2 is illustrated in Figure 4.16. These parameters are commonly used in practice
and reduce the dimension of feature maps by 75% compared to the original size
[127].

Figure 4.16: Max-pool with 2 x 2 window and stride 2

• Activation layer: is a non-linearity layer in a convolutional neural network that
consists of an activation function that takes the feature map as input and creates
the activation map as its output.

The Formulas of the most commonly used activation functions are as follow :

- Rectified Linear Activation (ReLU) :

σ(x) = max(0, x) (4.4)

- Logistic (Sigmoid) :
σ(x) = 1

1 + e−x
(4.5)

- Hyperbolic Tangent (Tanh) :

σ(x) = e(x) − e(−x)

e(x) + e(−x) (4.6)
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Figure 4.17: Activation Functions: ReLU, Sigmoid and Tanh

• Fully connected layers: fully connected layers are used as final layers of the network
in classification problems. These layers use the high-level features produced by
convolutions and generate class scores in order to correctly classify the objects in
the images.

• Dropout : is by far the most used regularization technique for deep neural networks
to prevent overfitting and improve generalization [128]. The idea is to temporally
dropping out a number of neurons during training phase (See Figure 4.18). For
example, if the dropout rate is around 0.5 this means that 50% of the neurons
will be randomly ignored at each iteration. However, a dropped-out neuron at one
iteration can be active at the next one. Dropout can be implemented on the input
layer or any hidden layer in the network but not the output layer.

Figure 4.18: Dropout in Convolutional Neural Networks

Over the last 10 years, a various number of CNNs architectures made such significant
contributions to the field and showed good results for challenging classification problems.
Huge improvement in CNNs architecture have been achieved through architectural in-
novations as well as data availability and advances in the hardware technology. Some of
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the most popular deep architectures include: LeNet, AlexNet, VGGNet, GoogLeNet and
ResNet. These architectures have yielded the best results on the ImageNet classifica-
tion challenge ILSVRC. ImageNet is a dataset of over 15 million labeled high-resolution
images with around 22,000 categories (See Figure 4.19). ILSVRC image classification
challenge uses a subset of ImageNet with 1000 images in each of the 1000 categories.

Figure 4.19: Samples from ImageNet Dataset

LeNet is one of the earliest image classification deep learning convolutional neural
network proposed by Yann LeCun et al. in 1998 [129]. They model was first developed
for handwritten digit recognition and has been then successfully applied to other image
classification problems.

Figure 4.20: LeNet-5 Model Architecture

47



4 Dataset and Techniques

LeNet-5 is the most popular LeNet, its architecture is straightforward and easy to
implement. The network consists of 5 layers with three sets of convolution layers with
a combination of average pooling followed by two fully connected layers. At last, a
Softmax classifier which classifies the images into corresponding class. The architecture
of LeNet can be seen in Figure 4.20.
Proposed by Alex Krizhevsky et al., AlexNet [125] is a very popular convolutional neu-

ral network that won the ILSVRC challenge in 2012. The Alexnet architecture is much
larger than the previous network LeNet. The model consists of eight layers: five con-
volutional layers followed by two fully-connected hidden layers and one fully-connected
output layer with 1000 class labels (See Figure 4.21). AlexNet has the advantage of
using Rectified Linear Units (ReLU) activation function instead of tanh after all the
convolution and fully connected layers except last one. Additionally, AlexNet allows
for multi-GPU training which reduced training time. Nevertheless, the network has 60
million parameters, thus, one major issue was the overfitting problem. Two methods
were employed to reduce overfitting: data augmentation and dropout.

Figure 4.21: AlexNet Model Architecture
.

VGG is a successor of the AlexNet created by K. Simonyan et al. from the University
of Oxford [130]. One major improvement of VGG, when compared to AlexNet is that
large kernel-sized filters were replaced with multiple 3×3 kernel-sized filters in the first
and second convolution. Two architectures were proposed VGG16 and VGG19. VGG16
model is composed of 16 layers comprising 5 blocks of convolution and max pooling
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layers, followed by fully connected layers. Whereas VGG19 consists of 19 layers with
extra convolution layers in the last three blocks (See Figure 4.22). VGG19 achieves
slightly better performance but requests more memory. VGG-16 was the winner of the
ILSVRC challenge in 2014.

Figure 4.22: VGG-16 Architecture vs VGG-19 Architecture
.

GoogLeNet was proposed by researchers at Google was the winner at ILSRVRC in
2014 [131]. The GoogLeNet architecture is very different from previous state-of-the-
art architectures. This model uses several small 1×1 convolutions in the middle of
the architecture and global average pooling in order to create deeper architecture while
drastically reduce the number of parameters. The deep architecture is composed by of 22
layers and 27 layers with pooling layers included (See Figure 4.23). However, the number
of parameters was reduced from 60 million to 4 million in comparison with AlexNet.

Figure 4.23: GoogLeNet Model Architecture
.

Another famous deep learning CNNs called Residual Neural Network (ResNet) [132]
was proposed in 2015 by researchers at Microsoft Research. The network won the top
position at the ILSVRC 2015 competition. The strength of the proposed approach is
the use of skip connections. The skip connection skips some layers of the model and
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connects directly to the output making it possible to train much deeper networks while
minimizing the complexity. This network is inspired by VGG architecture in which the
shortcut connection is added to convert the architecture into residual network. However,
ResNet have fewer filters and lower complexity than a VGG network. ResNet has many
variants based on the same concept but have different numbers of layers: ResNet34,
ResNet50, ResNet101, ResNet152, etc. The architecture of ResNet50 can be seen in
Figure 4.24.

Figure 4.24: ResNet-50 Model Architecture
.

4.3.3 Fully convolutional networks

The relentless success of deep convolutional neural networks for image recognition, detec-
tion, and classification over the past few years, motivated computer vision and machine
learning researchers to exploit their feature learning capabilities for semantic segmen-
tation problems. Semantic pixel-wise segmentation is more and more being an active
topic of research, fueled by the rise of publicly available challenging datasets [133], [134],
[135], [136], [137], etc.

Figure 4.25: Examples of semantic segmentation applications
.

Contrary to image classification where we classify the entire image, in semantic seg-
mentation the classification is performed at a pixel level. Semantic segmentation refers
to the process of classifying each pixel belonging to a particular class label in an image
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enabling a high-level understanding of the image. It assigns the same label color to all
pixels in the image of a specific class. Semantic segmentation has been used success-
fully for various applications ranging from scene understanding and photo editing to
augmented reality, autonomous driving and medical image processing, etc (See Figure
4.25).
In recent years, the great achievements of DL approaches for image classification were

quickly transferred to the semantic segmentation task. These powerful deep CNN archi-
tectures were directly adapted to be suitable for pixel-wise labelling. Currently, Fully
Convolutional neural networks (FCNs) have become the most successful state-of-the-art
DL methods particularly designed for semantic segmentation. They only have convolu-
tional and pooling layers which give them the ability to make pixel-wise predictions (See
Figure 4.26).

Figure 4.26: Fully Convolutional Network Architecture
.

FCNs are an extension of the classical CNNs introduced by Long et al. in 2015
[138]. The insight of the proposed approach was to take advantage of existing well-
known CNN architectures seen in section above and used them as building blocks for
these segmentation models, it is the case for: AlexNet, VGG16, GoogLeNet and ResNet.
These powerful classification networks were transformed to fully convolutional models
by replacing the fully connected layers with convolutional ones to produce dense pixel
by pixel labeled outputs instead of classification scores (See Figure 4.27).
The general architecture of fully convolutional networks is based on an encoder-

decoder structure where the down-sampling part of the network is called an encoder
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Figure 4.27: Comparison of a CNN for classification and a FCN which creates a heat map after
convolutionalization

.

and the up-sampling part is called a decoder. The encoder is adopted for feature ex-
traction while reducing the input spatial resolution which result in a lower resolution
feature map. This part of the network typically employs a pre-trained CNN like VGG
for example followed by the decoder part. The decoder upsamples low resolution fea-
ture representations extracted in encoding phase into a higher resolution to restore to
the full-resolution segmentation map. The encoder uses convolution and pooling layers
to reduce resolution of the feature map during down-sampling. Whereas up-sampling
is mainly done through transpose convolutions to recover the original resolution of the
input [139].

Different architectures of FCN have been developed over the last years. Long et al.
[138] first proposed three variants of FCNs trained end-to-end for semantic segmenta-
tion namely FCN-32s, FCN-16s and FCN-8s. All these three FCN models use same
encoder network based on the state-of-the-art VGG-16 that was pre-trained on the large
ImageNet object classification dataset which is considered as the backbone architecture.
However, the decoder network varies between these architectures, the up-sampling is
done using transposed convolutions but with different pixel stride. Therefore, knowledge
was directly transferred from VGG16 to perform semantic segmentation by replacing the
fully connected layers of VGG-16 with fully convolutional layers using 1x1 convolution
which produces a low-resolution heat map. Starting with the first architecture FCN-32,
the up-sampling was performed at stride 32, predictions back to the same size of input
image in a single step as can be seen in Figure 4.28. The obtained segmentation result
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of FCN-32 was very rough and not smooth due to loss of location information during
the encoder phase when the resolution of the input was reduced by a factor of 32. Thus,
the decoder struggles to produce fine-grained segmentation.

Figure 4.28: FCN-32 architecture with VGG16 backbone
.

To address this issue, the authors proposed adding skip connections in the up-sampling
stage from previous layers and summing the two feature maps. This helps to recover more
fine-grained details and indeed, generate accurate shapes for segmentation boundaries.
Thus, two other architectures were proposed FCN-16 and FCN-8 illustrated in Figure
4.29. FCN-16 combines predictions from both the final layer and the pool4 layer with
stride 16 resulting in finer details than FCN-32s (See Figure 4.30). FCN-8 performs even
better with more precise boundaries by including predictions from one more previous
pooling layer pool3 with stride 8.

Figure 4.29: FCN-16 and FCN-8 variants architecture combining predictions from both the
final layer and previous pooling layers

.
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Figure 4.30: Segmentation outputs of FCN with different strides: 32, 16 and 8 [138]
.

Another popular end-to-end FCN architecture for semantic segmentation is U-net
[140]. Specifically designed by Ronneberger et al. for biomedical image segmentation
purpose to deal with small databases. The network drives its name from the symmetric
U-shaped architecture. U-net is an encoder-decoder architecture which consists of a
contracting path corresponding to the encoder that capture context followed by the
expanding path that enables precise localization using transposed convolutions. The
network architecture is illustrated in Figure 4.31.

Figure 4.31: U-net Model architecture [140]
.

The contracting path is similar to a traditional convolutional neural network architec-
ture with a successive layers of convolution operation followed by ReLU and then max
pooling. The symmetric expanding path consists of deconvolution layers while pooling
operators are replaced by up-sampling operators which increase the resolution of the
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output. In order to localize, cropped feature map from the contracting path is combined
with the up-sampled output. The final layer consists of a 1x1 convolution used to map
each 64-component feature vector to the desired number of classes.
Segnet is another FCN architecture proposed in [141]. It is also an encoder-decoder ar-

chitecture followed by a final pixel-wise classification layer. The encoder part is topolog-
ically identical to the a VGG-16 network. The key component of Segnet is the hierarchy
of decoder part where each decoder corresponds to an appropriate encoder (See Figure
4.32). Decoders perform up-sampling of the input feature maps using max-pooling in-
dices received from the corresponding encoder. This improved boundary delineation and
reduced the number of parameters. The obtained feature maps are then convolved and
fed to a softmax classifier to produce the final pixel-wise segmentation for an output
with the same resolution as the input image.

Figure 4.32: SegNet Model architecture [141]
.

In a different approach, DeepLab achieved state-of-the-art semantic segmentation.
Four versions were proposed by Liang-Chieh Chen and the Google team. The two first
versions of Deeplab, DeepLabv1 [142] and DeepLabv2 [143] use Atrous Convolution and
Fully Connected Conditional Random Field (CRF). Atrous convolution also called di-
lated convolution provide larger output feature map without increasing the number of
parameters, whereas CRF help to refine segmentation results. DeepLabv1 was based
on the VGG-16 network while in DeepLabv2 VGG-16 was replaced with ResNet which
is more complex and expressive. Additionally, DeepLabv2 implements an Atrous Spa-
tial Pyramid Pooling structure (ASPP) to obtain multi-scale context information using
parallel atrous convolution layers with different sampling rates. However, since both
versions use CRF as a post-processing step, DeepLabv1 and DeepLabv2 are not con-
sidered as an end-to-end learning framework. Therefore, authors tried to rethink the
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DeepLab architecture to come up with a more enhanced version called DeepLabv3 [144].
DeepLabv3 discards CRF post-processing and improves ASPP. It employs atrous con-
volution with up-sampled filters to deepen the network. DeepLabV3+ [145] utilizes the
output of DeepLabV3 as the encoder output. In addition, DeepLabV3+ consists of a de-
coder module which improves the segmentation at object boundaries. The architecture
of DeepLabV3+ is shown in Figure 4.33.

Figure 4.33: DeepLabv3+ Model architecture [145]
.

4.4 Evaluation Metrics

est
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