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Abstract:  

This paper presents a comparative study of the performances of image registration techniques for 

diabetic foot (DF) thermal images. Four registration methods (Intensity based algorithm, Iterative 

closest point (ICP), subpixel registration algorithm which is mainly based on Fast Fourier Transform 

(FFT) and the pyramid approach for subpixel registration) have been implemented and analyzed. The 

performances of the four algorithms were evaluated using several overlap and symmetry metrics such 

as the Dice coefficient, RMSE and PSNR. The methods were analyzed in a first step on the images of 

contralateral feet (right and left) of the same subject, which is called in this paper "contralateral 

registration" and in a second step on a pair of images of the same subject but acquired in two different 

times T0 and T10 after applying a cold stress test, which is called "multi-temporal registration". Results 

showed that the intensity-based approach and the pyramid approach for subpixel registration algorithm 

give the best results in both types of registration (contralateral / multitemporal) and can be used 

efficiently for the registration of these types of images even under changing conditions. 

 Keywords: medical imaging, diabetic foot, thermography, registration, mobile health. 

I. Introduction 

According to the World Health Organization (WHO) [1], by 2030 diabetes will be ranked the 

7th leading cause of death worldwide. Type II diabetes (formerly known as non-insulin 

dependent diabetes or mature diabetes) results from a misuse of insulin by the body. It 

represents the majority of diabetes cases. It is largely the result of being overweight and not 

being physically active. A poorly controlled diabetes has a damaging impact on several organs 

of the body, namely the eyes (blindness), the kidneys (nephropathy) or renal failure, the heart 

(cardiac accident), the nervous system (neuropathy), the blood vessels (ischemia, stroke) and 

complications in the feet as ulcers that can lead to amputation of the lower limbs, known by the 

diabetic foot (DF) [2] which represents the core of our study. Diabetic foot ulcers are invariably 

preceded by inflammation, the presence of infection and pain.  However, in the early stages of 

wound development, patients with diabetes may have difficulty experiencing pain due to 

neuropathic sensory loss [3]. On the other hand, inflammation can be identified by assessing 

the temperature of the affected foot. Thus, temperature assessment using a thermal camera 

appears to be a useful predictor of foot ulceration and subclinical foot inflammation. Research 

shows that there is a significant relationship between increased temperature and diabetic foot 

complications [4][5]. 
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Increased temperature can be detected up to a week before foot ulceration occurs. The most 

commonly used criterion is that if the temperature difference ΔT of the corresponding area of 

the right and left foot is greater than 2.2◦C [6], there is a high risk of infection or ulceration in 

diabetic feet. This is called hyperthermia (see figure 1) and this temperature difference map is 

calculated point-to-point between the left and right foot after the process of registration and 

overlap. 

 

 

 

 

 

 

Thermography is a non-invasive technology and does not require any contact with the patient's 

skin. This allows using it to avoid any undesirable pressures that could affect the temperature 

measurement, as well as the transmission of pathological organisms. For all these reasons, it 

has been adopted as the main technology in our study. 

In this contribution, we analyze four different registration methods to obtain foot images aligned 

with high accuracy, in order to perform the thermal monitoring analysis, namely the calculation 

of |ΔT| between the contralateral feet as shown in Figure 1. This registration step requires high 

precision, because any deviation between the feet images will have a direct impact on the 

accuracy of the detection of abnormal plantar temperature.  

The rest of the paper is organized as follows. Section 2 called methodology presents different 

existing thermal analysis as well as the used database and the compared registration techniques. 

The third section is dedicated to the quantitative and qualitative results of the tested methods. 

Finally, the conclusion is presented in the last section. 

 

II. Methodology 

2.1 Different thermal analysis: 

The analyses of diabetic foot thermograms can be divided into three main categories, according 

to existing works in the literature.  The first is the asymmetric analysis between the two feet of 

the patient. As several studies have shown [7][3][6], there is contralateral symmetry in the 

distribution of skin temperature in healthy individuals, and any asymmetry in this distribution 

may be indicative of an abnormality. Therefore, many scientific experiments are conducted on 

diabetic patients [4][8][9][10][11][12][13][14] in which they found that a temperature variation 

of 2.2°c or more between the two feet (right and left) was detected in diabetic patients who are 

at risk of developing ulcers in these hyperthermic areas (see figure 1). The second type of 

thermal analysis is temperature distribution analysis [15] . The advantage of this type of analysis 

is that the temperature difference between the contralateral feet is no longer used and each foot 

can be analyzed separately. In the majority of the works based on this type of analysis, they 

divide the feet into several regions called angiosomes [16] by which they classify the patient's 

(a)                                      (b) 
Figure 1: (a) original thermal image, (b) Thermal difference map 

|ΔT| for a subject with an ulcer 



foot as being at risk of ulceration [17] [18]. The last type of analysis is based on external stress; 

the purpose of this analysis is to observe the response of the body thermoregulation system after 

applying a specific stress. This stress can vary from immersing limb in hot or cold water [12] 

[19], or it can be a mechanical stress such as walking or running [20]. This evaluation was 

presented in [19] by the thermal recovery index (TRI) which is calculated between the feet of 

the same patient in two different moments (before and after stress).  As in the study [12], they 

evaluated the relationship between plantar foot temperature variation and cold stress test applied 

on diabetic patients, by calculating the difference in temperature of the same foot at two 

different times, which is called a multitemporal analysis. 

These thermal analyses require a series of pre-processing steps of the foot thermograms, to 

prepare these zones of interest which are the plantar soles. The first task consists in segmenting 

the two feet and separating them from the rest of the background (figure 2), and in this study 

the images we are going to present are previously segmented using a neural architecture that is 

detailed in our previous work [12]. 

 

 

 

 

 

Figure 2: (a) thermal image, (b) segmented feet 

Once the feet have been segmented, a primordial step is to align the feet in order to calculate 

the temperature difference either by applying the contralateral analysis (asymmetry) or the 

analysis based on the external stress (mulitemporal). This step is the core of this work. Our 

objective is to find the most suitable registration method for our problem, which can be defined 

by two essential challenges; 

• Variation in shape and position between the patient's feet, which complicates the 

registration. 

• Dissimilarity between two images of the same patient taken at different times (in our 

case instant T0 before cold stress test and instant T10 after cold stress test), from 

different distances, or from different viewpoints. 

 

2.2 Dataset:  

In this section, we first explain the choice of the smartphone thermal camera, then, we describe 

the acquisition protocol of our images and the recruitment of participants.  

The chosen camera: is FlirOne Pro camera, designed to be connected to a smartphone.  This 

camera consists of two sensors. A thermal sensor that measures heat through infrared emission, 

and an RGB sensor designed to acquire visible images in parallel with the thermal core. The 

camera has a thermal image resolution of 160x120 pixels and a spectral range of 8-14 µm. 

FlirOne Pro can detect temperature differences of 0.1°C, which is sufficient to detect possible 

hyperthermia variations. It was used with a smartphone Samsung Galaxy S8. 



Acquisition protocol: 

To collect our images, we adopted two acquisition protocols, the first one allows to obtain a 

single thermal image of the patient's feet, after letting him rest for 15 min (figure 3). The second 

one called Cold Stress test [12] is a protocol that consists in taking two acquisitions of the same 

patient in two different moments (figure 4). 

  

 

 

 

 

 

 

As shown in figure 3, after the medical examination, Patients are requested to rest with barefoot 

for a 15 minutes interval to allow the feet to regain their normal temperature. Finally thermal 

and RGB images are acquired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Participants are asked to remove their shoes and socks. After a 15 minutes interval to allow the 

feet to recover their normal temperature, the person laid down on a stretcher or chair and placed 

his/her feet at the end of the stretcher, in a vertical position, and 10 cm apart. The baseline 

thermal image was taken freehandedly using a Samsung Galaxy S8 and a FLIR ONE Pro 

camera. After that, the patient is asked to immerse the feet, which are protected with thin plastic 

for 60 seconds in water at 15ºC. After 10 minutes, a new plantar thermal image is recorded. 

Figure 4 illustrates the protocol step by step. 

 

 

Participants:  

 

a- Control group:  Composed of 82 healthy (non-diabetic) individuals who participated in two 

acquisition campaigns. The first one was conducted at the University of Orleans, France. 

Figure 3: acquisition protocol (single acquisition) 

Figure 4: Cold Stress Test Protocol (multitemporal acquisition) 



Participants were members of Prisme staff. A total of 22 people participated in this first 

acquisition campaign. The second acquisition campaign was organized at the IBN Zohr 

University in Agadir, Morocco. In which volunteer students and members of the IRF-SIC 

laboratory without a history of diabetes participated. In this campaign, two acquisitions were 

carried out for 43 people in two different moments applying the protocol of the cold stress test 

described in figure 4. In addition to 17 people who participated in a single acquisition (figure 

3). The criteria for recruiting individuals were simple: any adult volunteer who is non-diabetic 

and does not have a foot problem. 
 

b- Diabetic group: 145 diabetic persons accepted to participate to our study within the diabetic 

Foot Service of the national hospital Dos De Mayo de Lima in Perou, and signed the informed 

consent form. For this campaign, we exclude patients with ulcers, partial or total amputations. 

All acquisitions and tests were carried out under the supervision of specialists and 

diabetologists, who performed a set of clinical examinations on the patients to monitor 

neuropathy and ischemia. Two images were captured for each patient at two different moments 

after applying the cold stress test (figure 4). 

 

2.3 Image Registration:  

Registration types:  

 

In this work we conducted two types of experiments. The first one is a contralateral registration, 

which consists of aligning the right and left feet of the same patient image. And the second is a 

mulitemporal registration applied on a pair of images of the same feet acquired in two different 

moments with the cold stress test. 

1- Contralateral registration:  The first dataset consists of thermal images of segmented feet 

as shown in Figure 2.b. The image of the two feet is divided into two (left foot and right foot), 

the right foot is considered as the reference image (fixed) and the left foot (moving) is flipped 

horizontally to register it with the reference image, in order to calculate the temperature 

difference between the two feet after aligning them. The process is detailed in figure 5. 

 

  

 

 

 

 

 

 

 

 

Registration method 

Original image     Segmentation Split  
Fixed image (right) Flipped image (left) 

Registered target 

Figure 5: contralateral registration process 



2- Multitemporal registration: This type consists of registering a pair of thermal images of the 

same patient taken at two different times. A first acquisition at time T0 captured before the 

application of the cold stress test [12] and a second acquisition at time T10 made 10 min after 

the application of the cold stress test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a mulitemporal registration in which the objective is to align the two images of the same 

foot at the two times T0 and T10. The image of the right foot at time T10, which is considered 

as a target (moving image), is aligned with the image of the right foot at T0, which is considered 

as a reference image (fixed image), and the same for the left foot. The process is shown in 

Figure 6 above. 

Registration Techniques:  

 

In our research, the objective is not to make the foot images identical, since a 2D medical image 

is the projection of a 3D reality. We are looking for the transformation that minimizes the 

distance between the information contained in one image and its correspondence on the other 

image.  As well as studying the significant differences that will allow us to localize the region 

at risk of ulceration. In our case, the registration must not modify the size of potential anomalies, 

or make local deformations on the foot, since this could, for example, mask the detection of a 

hyperthermia area. Therefore, the registration methods chosen in this paper are linear, either 

rigid transformations  (translation-rotation) such as the ICP [21] and the Sicairos et al. method 

[22], or affine transformations, namely intensity based algorithm [23] and pyramid approach 

[24] . In the following, we will present the registration techniques that we have compared and 

evaluated on our database. 

Image Time T0 

Image Time T10 

Segmented Feet 

Split 

R
eg

is
tr

at
io

n
 

m
et

h
o

d
 

R
eg

is
tr

at
io

n
 

m
et

h
o

d
 

Segmented Feet 

Right foot at T0 

(fixed image) 

Right foot at T10 

(moving image) 
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Figure 6: multitemporal registration (after applying cold stress test) 



Iterative Closest Point (ICP) [21] 

The Iterative Closest Point (ICP) algorithm is used to match two sets of data, most often in the 

form of point clouds or meshes corresponding to two partial views of the same object. 

Iteratively, the algorithm revises the transformation (combination of translation and rotation) 

needed to minimize an error metric, usually a distance between the source and target point 

clouds, such as the sum of squared differences between the coordinates of the matched pairs.  

Given a pair of images (𝑋, 𝑌), X represents the source image and Y the image to be registered. 

The objective is to find a rotation matrix R and a translation vector 𝑡 with which the reference 

image is in the best alignment with target image Y.   

 

𝑋 = {𝑥⃗1, 𝑥2⃗⃗⃗⃗⃗, … . 𝑥𝑛⃗⃗⃗⃗⃗}     (1)  

 

𝑌 = {𝑦⃗1, 𝑦2⃗⃗⃗⃗⃗, … . 𝑦𝑛⃗⃗⃗⃗⃗}     (2)  

 

The minimization problem based on Euclidean distance is formulated as follows:  

 

     min
𝑅,𝑡

∑ ‖𝑥𝑖⃗⃗⃗⃗ − (𝑹𝑦𝑖⃗⃗⃗ ⃗ + 𝑡)‖
2

2𝑛
𝑖=1         (3) 

 

The ICP is proposed to solve this problem, by iteratively computing the correspondence and 

the rigid transformation R and 𝑡 until the objective function converges to a local minimum.  

In this work, we used a maximum number of iterations of 300 and a minimum difference in the 

correspondence measure between two successive iterations of 1𝑒−5. These values were chosen 

empirically, after a number of tests, as it was observed that no more than 300 iterations were 

required in any of the studied cases to converge to an optimal solution. 

 

Sicairos et al approach [22]  

To perform a simple translation between two images, the usual technique for solving this 

problem is to compute an oversampled cross-correlation between the image to be registered and 

a reference image, using a Fast Fourier Transform (FFT), and locate its peak. The computational 

burden associated with this approach increases as the accuracy required for the registration 

increases, especially in terms of memory. 

Therefore, as an alternative Guizar-Sicairos et al [22] have developed different algorithms that 

significantly improve performance without sacrificing accuracy. These algorithms start with an 

initial estimation of the location of the cross-correlation peak obtained by the FFT method with 

an upsampling factor of 𝑘0=2. This initial upsampling is used for the purpose of selecting an 

appropriate starting point for cross-correlations that might have more than one peak of similar 

magnitude. This type of algorithm, as in the FFT upsampling approach, always uses all the 

information available in the images to compute the initial estimate and each point of the 

upsampled cross-correlation grid, which makes it very robust to noise. It has been demonstrated 

in [22] that these new registration refinement algorithms can achieve subpixel image 

registration with the same or better accuracy than traditional FFT oversampling but with 

significantly reduced computation time and memory requirements. 



Intensity based registration [23] 

The intensity-based registration method operates directly on the gray values of the images. The 

main goal of this technique is to find the right transformation that maximizes (or minimizes) 

the similarity metric between the corresponding voxels.  

The most frequently used similarity measures are the sum of squared differences of pixel 

intensities, the regional correction or the mutual information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the figure 7, the algorithm takes two images in input, the image to be registered 

(moving image) and the reference image (fixed image). It requires four other essential 

parameters, namely; a similarity metric, an optimizer and the type of transformation. 

The process begins with the transformation type we specify and an internally determined 

transformation matrix. They jointly determine the specific image transformation which is 

applied to the moving image with a bilinear interpolation. Then the metric compares the 

transformed moving image to the fixed image and a metric value is returned. 

Finally, the process stops when it has reached a point of decreasing efficiency or has reached 

the maximum number of iterations. If there is no stopping condition, the optimizer adjusts the 

transformation to start the next iteration. 

In this experiment, we ran the intensity-based algorithm using One Plus One Evolutionary 

optimizer with an initial radius of 6,25 𝑒−3/3,5, growth factor of 1,05 and a maximum iterations 

number of 300. The similarity metric used is a mattes mutual information metric. For the initial 

transformation type, we used affine transformation. These chosen parameters are the ones that 

gave the best results after several tests. 

 

Pyramid Approach for subpixel registration [24] 

Thévenaz et al. [24] proposed an automatic sub-pixel registration algorithm that minimizes the 

mean square intensity difference between a reference data set and a test data set, which can be 

images (two-dimensional) or even volumes (three-dimensional). This method uses an explicit 

spline representation of the images in conjunction with spline processing, and is based on a 

coarse-to-fine iterative strategy (pyramid approach).  

Figure 7: Intensity-based registration algorithm [23] 



The minimization is performed according to a new variation (ML*) of the Marquardt-

Levenberg algorithm [25] for nonlinear least squares optimization. The geometric deformation 

model consists of a global three-dimensional (3D) affine transformation that can optionally be 

restricted to rigid body motion (rotation and translation), combined with isometric scaling. It 

also includes an optional adjustment of the contrast differences of the images.  

According to [24] , this algorithm has shown excellent results for the registration of intramodal 

positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. 

III. Results  

In order to assess the best approach for registering the thermal infrared images of the diabetic 

foot application, we have tested the four registration methods on our two types of acquisitions, 

the first “Contralateral” (section 2.2-a) containing one image of the feet of each patient (left, 

right) and the second “Multitemporal” (section 2.2-b) containing a pair of images of the same 

feet acquired at two different times. The purpose is to evaluate the robustness of these 

approaches in both cases of registration (contralateral/multitemporal) and under the changes 

that can occur in the position of the subject’s feet, changes in the distance of acquisition or 

viewpoints, especially for the images captured at two different times. 

3.1 Evaluation metrics 

 

To quantitatively evaluate the performance of these algorithms, we adopted three evaluation 

metrics that are most commonly used in the field of registration evaluation. The first one is the 

Dice similarity Coefficient (DSC) [20], the second one is the RMSE (Root Mean square error) 

and the last one is PSNR (Peak Signal to Noise Ratio). 

 

• Dice similarity coefficient (DSC): is a statistical indicator that measures the similarity 

of two samples. This score quantifies the overlap between the fixed foot and the 

registered one. 

  

                                       𝐷𝑆𝐶 =  
2∗| 𝑋∩ 𝑌 |

|𝑋|+| 𝑌|
                                                                      (4)  

 X is the reference image and Y is the registered image. 

• Root Mean Square error (RMSE): used to measure the difference per pixel between 

the moving image and reference image. The lower the value of RMSE, the better the 

registration performance. 

        𝑅𝑀𝑆𝐸(𝑋, 𝑌) = √
∑ (𝑋𝑖−𝑌𝑖)²𝑛

𝑖=1

𝑛
                   (5) 

Where X and Y are respectively the reference image and the registered image.  n is the 

total number of pixels in the image.  

 

• Peak Signal to noise ratio (PSNR) : is identified as a numerical measure for image 

registration quality based on the pixel differences between two images [26]. The 

Mathematical equation is provided as in equation 6 based on [26] Where 𝑀𝐴𝑋𝐼 is the 

maximum possible pixel value of the image and MSE is mean square error between 

reference and target image. A higher PSNR value indicates a higher similarity between 



registered images. Contrarily, the smaller PSNR value indicates poor similarity between 

images. 

 

     𝑃𝑆𝑁𝑅 =  10. 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)                             (6) 

     𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑋𝑖 − 𝑌𝑖)²𝑛

𝑖=1                                               (7) 

 

3.2 Comparative Results: 

 
Tableau 1: comparative results for contralateral Registration between right and left feet 

Metrics (Overlap 

performance) 

Intensity based 

registration[23] 

ICP 

[21] 

Sicairos et al  [22] Pyramid 

approach [24] 

Dice Coefficient 0,97 0,95 0,93 0,96 

RMSE 0,245 0,315 0,34 0,23 

PSNR 25,85 23,62 22,90 26,41 

 

Tableau 2: comparative results for multitemporal registration 

Metrics (Overlap 

performance) 

Intensity based 

registration[23] 

ICP 

[21] 

Sicairos et al [22] Pyramid 

approach [24] 

Dice Coefficient 0,968 0,905 0,89 0,94 

RMSE 0,344 0,445 0,442 0,318 

PSNR 22,24 19,85 19,85 23 

 

 

  

 

Figure 8: Dice coefficient, RMSE and PSNR metrics for the four registration methods obtained with images of contralateral 
feet (registration between right and left foot) 

From the results in table 1 and 2, on one hand we deduce that the intensity-based method gives 

the best value for the Dice coefficient (0.97) followed by the pyramid method (0.96). (The best 

results are highlighted in bold). On the other hand, we notice that the four algorithms are more 

robust in the first type of registration (contralateral registration), which is reasonable, since in 

these acquisitions the two feet to be registered (right and left) are positioned at the same distance 
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from the camera. So generally, in this case we are in front of geometrical transformations that 

can be considered as a combination of translation and rotation.  

Contrary to multi-temporal registration, in which we can clearly see that in some cases, the 

acquirer can change the distance and position of the camera between time T0 and T10 (ex: 

figure 13). With smartphone, freehandedly, the distance between the feet and the camera may 

slightly change. This generates a change of scale between the two feet, making the task of 

registration more complicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Dice Coefficient of the four registration methods to evaluate their performance in 
both type of registration (contralateral and multitemporal) 

Figure 10 : RMSE of the four registration methods to evaluate their performance in both 
type of registration (contralateral and multitemporal) 
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Figure 12: example of contralateral registration (left foot and right foot) a little complicated (difference in shape of the feet 
and position). in all the pictures, the foot in green is the fixed foot (right) and the foot in pink is the moving foot (left) 

 

Figure 11: example of contralateral registration (left foot and right foot). in all images, the foot 
in green is the fixed foot (right) and the foot in pink is the moving foot (left) 



Based on the results of the two previous tables (1 and 2) and the curves of the two figures 9 and 

10, we can see that the performance of the compared methods has decreased between the 

contralateral and the multitemporal registration. For example, in figure 9 we have the ICP 

method with a DSC of 0.95 as a result of final overlap of the registered feet (right and left), this 

value decreased to 0.90 when applying ICP on the images of the same feet acquired at two 

different times, a difference of 5%. And this is expected, since the transformation applied by 

ICP cannot perform perspective corrections. While in the images of the cold stress test the 

person making the acquisitions often changes the distance and position of the camera between 

the two instants. The only method that kept the same performance between the two types of 

registration is the intensity-based method. As shown in Figure 9 the dice values for 

multitemporal and contralateral registration are almost identical for this method, unlike the 

other algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The qualitative results are in total agreement with the results calculated above (table 1 and 2), 

we see that in figure 11 All four registration methods obtain a visually correct overlap between 

the fixed thermal image and the registered foot when both feet of the subject are located at the 

same distance from the camera. And the two algorithms based on the intensity and the one of 

Thévenaz et al [24] (pyramid registration approach) give the best performances. 

For multitemporal registration, as shown in figures 13 and 14, the added challenges to the 

algorithms are the change of the capturing view point and the difference distance from the 

camera between the acquisition at time T0 and the second acquisition at time T10.  The methods 

that have proven their robustness in these cases are intensity based and pyramid approach.  
 

Figure 13: example of multitemporal registration (right foot at time T0 and right foot at 
time T10). in all images, the foot in green is the fixed foot (right foot T0) and the foot in pink 

is the moving foot (right foot T10) 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: example of multitemporal registration (left foot at time T0 and left foot at time T10). in all images, the foot in 
green is the fixed foot (left foot T0) and the foot in pink is the moving foot (left foot T10) 

 

IV. Conclusion  

To diagnose the DF problem at an early stage and to detect the areas at risk of ulceration, it is 

necessary to have a fast and non-contact procedure with simple and low-cost devices. In order 

to achieve this goal, it is important to implement an approach with a high-level accuracy in 

diagnosis, ensuring that the acquisition and processing of data does not introduce systematic 

errors that can be avoided at the time of conception.  

Medical diagnostic devices of DF supposed to perform these thermal analyses; such as the 

computation of temperature difference between contralateral feet or between feet after 

application of external stresses, require a correct alignment of the acquired images. Because 

any deviation between the images of the feet will have a direct impact on the accuracy of the 

subsequent abnormal temperature detection. Hence the need to evaluate the performance of the 

registration techniques used at the heart of this alignment.  

In this work, a group of registration methods were implemented and evaluated to match thermal 

images for diabetic foot application. For the registration of contralateral feet, the methods 

compared in this paper gave satisfying results. However, when applying the multitemporal 

registration which consists in aligning the same foot captured in two different instants (T0 and 

T10), we notice that the performances of ICP and Sicairos et al method have decreased.  

This can be explained by the complexity increased by changing the capturing view point and 

distance in two different moments. 



While Intensity based algorithm and pyramid approach have proved their stability and 

robustness in both types of registration, especially the intensity-based method. This is 

confirmed by the Dice coefficients obtained, which are 0.97 and 0.96 for intensity and pyramid 

respectively, in the case of contralateral registration. 0.968 and 0.94 in the case of multitemporal 

registration regardless of the distance between the subject and the camera. 

 

This comparative study permitted to find the registration method that fits the most to our 

thermal images, with all their specificities and their complexity related to the adopted 

acquisition protocol. This " free hand " protocol is based mainly on a smartphone and the 

dedicated thermal camera. Even if on one hand it complicates the tasks of image processing 

such as segmentation and registration, on the other hand, it allows to use the diagnosis system 

by patient in a convivial and simple way, without needing the intervention of a specialist. 

In the future, we intend to develop thermal analysis approaches for the detection of 

hyperthermia areas. Subsequently we envisage combining and improving all these techniques, 

in order to integrate them into a complete system of diagnostic to help doctors and podiatrists 

to identify DF disorders in early stages. This will certainly decrease the risks of ulcerations and 

amputations. 
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