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Diabetic foot thermal image segmentation using Double Encoder-ResUnet
(DE-ResUnet)

Doha Bouallala , Hassan Douzia and Rachid Harbab

aIRF-SIC Laboratory, Ibn Zohr University, Agadir, Morocco; bPrisme Laboratory, Polytech Orl�eans, Orl�eans, France

ABSTRACT
The use of thermography in the early diagnosis of Diabetic Foot (DF) has proven its effective-
ness in identifying areas of the plantar foot that are susceptible to ulcer development.
Segmentation of the foot sole is one of the most pertinent technical issues that must be per-
formed with great precision. However, because of the inherent difficulties of foot thermal
images, such as unclarity and the existence of ambiguities, segmentation approaches have not
demonstrated sufficiently accurate and reliable results for clinical use. In this study, we aim to
develop a fully automated, robust and accurate segmentation of the diabetic foot. To this end,
we propose a deep neural network architecture adopting the encoder-decoder concept called
Double Encoder-ResUnet (DE-ResUnet). This network combines the strengths of residual network
and U-Net architecture. Moreover, it takes advantage of RGB (Red, Green, Blue) colour images
and fuses thermal and colour information to improve segmentation accuracy. Our database con-
sists of 398 pairs of thermal and RGB images. The population includes two groups. The first
group of 54 healthy subjects. And a second group of 145 diabetic patients from the National
Hospital Dos de Mayo in Peru. The dataset is splitted into 50% for training, 25% for validation
and the last 25% is used for testing. This proposed model provided robust and accurate auto-
matic segmentations of the DF and outperformed other state of the art methods with an aver-
age intersection over union (IoU) of 97%. In addition, it is able to accurately delineate the part
of toes and heels which are high risk regions for ulceration.
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1. Introduction

Diabetes-related diseases mainly affect the feet, eyes,

heart, kidneys, nervous system and blood vessels [1,

2]. This work solely concerns Diabetic Foot disease

(DF), which is defined as infection, ulceration or

destruction of the deep tissues of the foot [3]. It also

includes peripheral arterial disease and neuropathy [4].

The severity of DF can lead to hospitalisation or even

to lower limb amputation, which imposes a major bur-

den to society and great loss in health-related quality

of life for patients. In many cases, early detection of

DF and preventive care have proven their efficiency

limiting the development of foot ulcers and related

amputation. Once diabetic foot disease is detected,

the patient can be treated with specific education,

regular foot care and therapeutic shoe inserts.

Consequently, the incidence of serious complications,

i.e., ulceration and amputations, could be further

reduced, according to diabetes experts.

Abnormal temperature variation in the patient’s
foot can be an early indicator of diabetic foot disor-
ders [5, 6]. Accordingly, skin temperature is an import-
ant factor in the assessment of foot health.
Nevertheless, this data is currently not well exploited
for diabetes-related disease monitoring and detection.
The most common and clinically effective monitoring
protocol for DF ulcers is the daily temperature com-
parison of six contralaterally matched plantar zones as
described in [5]. This self-monitoring procedure is time
consuming and there is often a lack of adherence to
monitoring protocols, there is also the assessment of
foot temperature by manual palpation, which is nei-
ther reliable nor efficient method and depends on the
expert’s level of competence.

Thermography is a non-invasive, safe, accessible,
non-contact and easily reproducible technique that
has been used in several fields, such as military [7],
space [8], civil applications [9] and medicine [5, 10,
11]. In the medical field, thermography has been used
for the diagnosis and detection of soft tissue
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pathologies based on temperature measurement
[12–14] and has proven its effectiveness in identifying
possible ulcerous regions in the plantar foot.

A temperature difference between the two feet of
more than 2.2 �C is considered abnormal and is called
hyperthermia. This hyperthermia can be present up to
two weeks before the development of a foot ulcer.
The Early detection of hyperthermia on the sole of the
foot in at-risk patients decreases the incidence of foot
ulcers by 3 times. This major result clearly indicates
the potential of such system. Therefore, the develop-
ment of new effective diagnostic tools using thermal
cameras has become an attractive need. Various tech-
nologies have been developed to measure foot tem-
perature in order to detect hyperthermia [15].
Unfortunately, none of these systems are effective or
easy to use.

In recent years, the use of thermal cameras has
started to gain interest in the medical field, essentially
since the price of infra-red cameras has fallen sharply

while their technical capabilities have increased con-
siderably. Therefore, these technologies are strong
candidates for detecting thermal changes in diabetic
foot disorders. Nonetheless, the implementation of a
thermal camera-based monitoring system requires the
resolution of several technical issues before being
integrated into clinical care protocols. These technical
issues include the choice of camera, the acquisition
protocol, automating the processing of the acquired
images and extracting the maximal amount of thermal
information from these data.

Among the most challenging tasks in the develop-
ment of such a system, there is the automatic seg-
mentation of the plantar soles. It is a crucial and
indispensable step in this early diagnosis system. This
step must be automatic, fully unsupervised and with-
out any interaction with the user. Manual segmenta-
tion of the plantar sole depends on the observer and
consumes a lot of time, hence the essence of auto-
mating this essential step.

Figure 1. Examples of thermal images difficult to segment.
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To deal with the segmentation task, most of the
existing works have defined restrictive acquisition pro-
tocols, which consist in homogenising the background
of the images and masking all thermal sources except
those coming from the plantar foot [16–18] which
facilitates the separation of the foot from the rest of
the background. The majority of studies are based
only on thermal images in the segmentation [11,
19–21]. These thermal images consisting of a single
channel suffer from important limitations; they are
unclear, and some regions cannot be detected, for
example the toes or cold heels (Figure 1). These areas
may go unnoticed or confused with other parts in the
background. Similarly, some heat sources in the body
or in the background may be considered as part of
the foot as they have similar statistical characteristics.
In addition, the thermal sensors used in previous
works are not equipped with visible light cameras to
provide spatially registered RGB images on the ther-
mal images, which requires an additional camera.

Lately, multi-modal fusion strategies have gained
attention due to the decreasing price of sensors. They
are usually based on existing modality-specific meth-
ods that, once combined, enrich the representation of
the scene in such a way that the strengths of one
modality offset the weaknesses of another. That’s why
we thought of integrating the colour information in
our segmentation process [22] to overcome the limita-
tions of classical methods. In this context, several
works adopted the fusion of thermal and colour image
to improve the segmentation performance. In the field
of autonomous vehicles, [23] and [24] have developed
two neural networks RTFNet and MFNet, respectively
that take as inputs both thermal and RGB images.
Their objective is to be able to detect pedestrians and
urban scenes in different light conditions. Especially
during the night. And this fusion strategy was very
efficient in this case. These two architectures are

based on the encoder decoder concept. Similar to
FuseNet [25], which fuses depths images and RGB
images to indoors scenes segmentation. Visual images
RGB provide detailed morphological information and
clear delineation of the feet unlike IR images.
Moreover, we used the Flir one pro camera which con-
tains two sensors, thermal and RGB respectively. This
allows it to capture spatially registered RGB and
IR images.

The object of this paper is to improve the accuracy
and robustness of diabetic foot segmentation. Based
on two main ideas; the first one is to create a novel
network that combine the architectures U-Net and
ResNet which has proven their efficiency in several
studies [26, 27] and the second one is to take advan-
tage of thermal cameras, by fusing RGB and thermal
information to reach a better performance.

The rest of the paper is organised as follows.
Section 2 describes the acquisition protocol and the
proposed DE-ResUnet method. Section 3 is devoted to
experiments and results of the tested methods, and
finally, discussion and conclusion are presented in the
last sections.

2. Materials and methods

2.1. Data acquisition

The RGB and thermal images were acquired with a
FlirOne Pro camera [28]. The chosen camera is
designed to be plugged into a smartphone. We used
a Samsung Galaxy S8 smartphone. This camera con-
sists of two sensors. A thermal sensor that measures
heat through infra-red emission, characterised by a
thermal image resolution of 160� 120, and the spec-
tral range of the thermal sensor is 8–14 mm. The other
camera is a conventional 1440� 1080 pixel visual cam-
era, designed to work in parallel with the thermal core

Figure 2. Acquisition example: (a) the RGB image and (b) the corresponding thermal image.
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to produce images and video with a much higher
resolution than 160� 120.

The camera software includes an alignment control
technology called Multi-Spectral Dynamic Imaging
(MSX) [29], allowing it to provide spatially registered
RGB and thermal images. MSX adds visible light details
to thermal images in real time for greater clarity,
embedding edge and outline detail onto thermal
readings. Unlike image fusing (merging of a visible
light and thermal image), MSX does not dilute the
thermal image or decrease thermal transparency.
Every time you take a picture, both a thermal image
and a visible image are captured simultaneously
(Figure 2). Another feature that was very important in
our study is that Flir One Pro camera can detect tem-
perature differences of 0.1 �C which is sufficient to
detect possible hyperthermia variations that may
appear in the sole. Combined with the ability to meas-
ure higher temperatures than the third-generation Flir
One or the Flir One Pro LT, the Flir One Pro is a
powerful model.

Our database consists of 398 pairs of thermal and
RGB images. The population included two groups. The
first group of 54 healthy subjects, 23 women and 31
men with an age range of 24 to 70 years, who were
part of the staff members of the two laboratories
IRF_SIC of Ibn Zohr University and PRISME laboratory
of the University of Orleans. And a second group of
145 diabetic patients participated in an acquisition
campaign conducted from 14 January 2019 to 9
March 2019, within the diabetic service of National
Hospital Dos de Mayo (HNDM), Lima, Peru. The Ethic
committee of HNDM has approved this study on 10
January 2019. For type II diabetes, exclusion criteria
were defined, such as patients suffering from ulcers,
neurodegenerative diseases, or amputations. These cri-
teria are comparable to those used in other similar
studies [30–32]. 145 type II diabetic patients accepted

to participate in our study and signed the informed
consent form. These patients were taken in charge by
qualified nurses and medical doctors. General data
include age, time of diagnosis (TOD), and body mass
index (BMI). Clinical data concern the evaluation of
foot deformity, the neurological assessment and the
vascular assessment.

Two images were acquired for each subject and
stored in Portable Network Graphic (PNG) format. The
first was taken at the beginning of the examination
(T0), as soon as the person sits, he/she is asked to
remove shoes and socks. The person lays down on a
stretcher and places the feet at the end of the
stretcher in an upright position. The second acquisi-
tion (T10) was taken 10min later, in order to allow the
feet to return to their normal temperature. Meanwhile
the subject was at the same resting position. Note
that no subject participated in the acquisition more
than once. The acquisition of the images is done free-
handedly, without the use of any object to homogen-
ise the background as has been done in other works
[16, 17].

Our images were manually segmented in order to
extract the soles of the feet from the background. No
expert was needed to accomplish this essential task
(Figure 3). Each image was segmented using the
Image labeller app provided by MATLAB software (ver-
sion R2018a) [33]. There are two classes in our images;
namely the plantar sole and the background which
groups the rest of the image and any object different
from the foot. The resolution of the images
is 480� 640.

2.2. The proposed network

In the field of medical imaging, the samples available
to train deep neural networks are often limited, diffi-
cult to collect or inaccessible. This is the case in our
study. And to solve this problem of lack of data, we
have two solutions, either to use a pre-trained net-
work and then refine it on the target data set, as it
has been done in several works [34], or the second
solution is to use data augmentation. U-Net [35] is
one of the famous Fully Convolutional Networks (FCN)
[36], which have been highly successful at biomedical
image segmentation especially in small datasets.
U-Net’s strength consists of copying low-level features
to the corresponding high levels which creates a
propagation of information, facilitates the backward
propagation during training and compensates the
finer details of the low-level to the high-level seman-
tic features.

Figure 3. Illustrative example showing ground truth of image
in Figure 2.
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2.2.1. Unet
As shown in the figure below (Figure 4), UNet [35] has
a “U” shape, which justifies its name. This architecture,
similar to FCN and SegNet [37], uses fully convolu-
tional layers to perform the semantic segmentation
task. It consists of an encoder (also called contraction
path) that extracts the image’s spatial features and a
decoder (expansion path) which builds the segmenta-
tion map from the encoded features. The encoder is
composed of four contraction blocks. Each block con-
sists of a sequence of two 3� 3 convolution opera-
tions, followed by a max pooling operation of size
2� 2 and stride of 2. After each down-sampling, the
number of filters in the convolutional layers is
doubled. A block of two 3� 3 convolutional opera-
tions followed by a 2� 2 up sampling layer acts as a
bridge between the encoder and the decoder.
Symmetrically, the decoder also consists of a set of
expansion blocks. Each block passes the input to two
3� 3 convolutional layers followed by a 2� 2 up sam-
pling operation which halves the feature channels.
Similarly, to the encoder this sequence of up-sampling
and two convolution operations is repeated four
times. Finally, a 1� 1 convolution operation is per-
formed to generate the final segmentation map.

UNet is a network and training strategy that relies
on the strong use of data augmentation to use the

available annotated samples more efficiently. The
architecture consists of a contracting path to capture
context and a symmetric expanding path that enables
precise localization, and most importantly, it can be
trained end-to-end from very few images. That is why
we adopted it in our architecture, since we have a lim-
ited database.

2.2.2. Residual blocks
The ResNet deep network [38] has arguably been the
most ground-breaking work in the computer vision
and deep learning community in recent years, after
blowing people away in 2015 with its famous victory
in the ILSVRC classification competition. It outper-
formed humans with 3.6 classification errors and
expanded the network to a depth of 1202 layers.
ResNet allows training up to hundreds or even thou-
sands of layers, while achieving convincing perform-
ance. The key to ResNet’s success is the adoption of
the central idea of identity shortcut connection that
allows skipping one or more layers, as shown in
Figure 5(b).

Many computer vision applications other than
image classification have been improved by taking
advantage of the power of ResNet, such as object
detection, face recognition and semantic segmenta-
tion. The residual units make the deep network easy

Figure 4. The U-Net Architecture. Comprises an encoder and a decoder pathway, with skip connections between the correspond-
ing layers.
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to train and the skip connection in the network helps
to propagate the information without degradation,
improving the neural network design by decreasing
the parameters with comparable or increased perform-
ance on the semantic segmentation task. Another
advantage of ResNet is that it abandons Fully
Connected and instead adopts Average pool, which
avoids overfitting and significantly improves the accur-
acy. For all these reasons we used a pre-trained
ResNet as the backbone of the architecture. The math-
ematical formula behind each residual block can be
illustrated as follows:

yl ¼ h xlð Þ þ F xl, wlð Þ (1)

xlþ1 ¼ fðylÞ
Where xl and xlþ1 are the input and output of

the l-th residual unit, Fð:Þ is the residual function, fðylÞ
is activation function and hðxlÞ is the identity map-
ping function.

2.2.3. Double Encoder residual UNet (DE-ResUnet)
In this section we present the novel neural architec-
ture called Double Encoder Residual UNet (DE-
ResUnet) for semantic segmentation of diabetic foot
images by fusing thermal and RGB information. The
overall architecture of DE_ResUnet is shown in Figure
6. Our network also adopts the encoder-decoder struc-
ture that proved its effectiveness in several semantic
segmentation architectures [39]. DE-ResUnet is com-
posed of three parts; a thermal encoder, an RGB
encoder, which extract features from the thermal and

RGB images respectively, and the decoder, which
recover the representations to a pixel-wise
categorisation.

This architecture is built based on the U-Net and
ResNet networks, and inspired by multispectral net-
works such as FuseNet [25], MFNet [24] and RTFNet
[23] which use both types of information; thermal and
RGB images. The differences between our DE-ResUnet
and the original U-Net consist of three main character-
istics. First, the network contains two encoders instead
of one, in order to extract features from two different
sources, i.e., the thermal image and the RGB image at
the same time. Second, the pre-trained ResNet [38]
was employed as the feature extractor in each
encoder. Finally, a small decoder with a single convo-
lutional layer in each block was designed in order to
reduce the parameters of the architecture as well as
to speed up the inference.

DE-ResUnet contains two encoders that are used
for the extraction of thermal and RGB features. These
two identical encoders are built with ResNet units.
Starting with an initial block that contains a convolu-
tional layer, a BN layer (batch normalisation layer) and
a ReLU activation layer (rectified linear unit activation
layer). The two encoders are identical to each other
except for the number of input channels in the first
layer. Since ResNet is designed to use 3-channel RGB
images, we changed the number of input channels of
the convolutional layer in the initial block of the ther-
mal encoder to 1. Just after the convolutional block, a
max pooling layer of size 3� 3 and stride of 2

Figure 5. (a) DE-ResUnet decoder up sampling block with one convolution operation (b) illustrative scheme of a residual
block [38].
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followed by four residual layers are employed sequen-
tially to progressively reduce the resolution and
increase the number of channels of the feature maps.

In the later stage of the encoders, we merge the
RGB and thermal information by applying a concaten-
ation operation of the corresponding RGB and thermal
feature maps. The shape of the feature map is not
changed after the fusion operation. The output of the
last fusion layer is taken as input to the decoder. A
block of 3� 3 convolutional operation acts as a bridge
between the encoder and the decoder.

In the decoder part, the resolution of the feature
map is gradually restored to that of the input images.
DE-ResUnet decoder is designed symmetrically to the
two encoders, which is illustrated in the architecture
diagram (Figure 6). This allows the network to keep
the U shape inspired by the original UNet network.

Just like in UNet, our decoder consists of up-sam-
pling and concatenation followed by regular convolu-
tion operations. So, in our network each unit of the
decoder consists of an up-sampling block followed by
a convolution operation to produce dense feature
maps as detailed in Figure 5(a). Since up-sampling is a

sparse operation, we need a good prior from the pre-
vious stages to represent the localisation better. This
is why we concatenate the higher resolution feature
maps from the encoders with the up-sampled fea-
tures. Illustrated in Figure 6 by skip connections, this
operation preserves the shallow information and
recovers fine details in the prediction. After the last
level of the decoding path, a 1� 1 convolution is used
to project the multi-channel feature maps into the
desired segmentation.

3. Results

In this section we evaluate our proposed DE-ResUnet
architecture by comparing it with five state-of- the-art
neural networks. We’ve tested all the networks on our
database of diabetic foot images.

3.1. Implementation details

All experiments in this work were run on google cola-
boratory, often abbreviated to “Colab”, a hosted ser-
vice of jupyter notebooks pre-configured with

Figure 6. The architecture of the proposed DE-ResUnet.
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essential machine learning and artificial intelligence
libraries, such as TensorFlow, PyTorch and Keras. It is
suitable for machine learning, requires no configur-
ation and allows access to computing resources,
including GPUs. We implemented and executed our
experiments in Python, using the PyTorch library and
the used GPU was NVIDIA Tesla T4. We train the pro-
posed architecture DE-ResUnet using stochastic gradi-
ent descent (SGD) optimiser with a momentum of 0.9
and weight decay of 0.0005. The initial learning rate is
set to 0.01 and at each epoch it was multiplied by a
decay rate of 0.94, in order to decrease gradually. The
dataset is splitted into 50% for training, 25% for valid-
ation and the last 25% is used for testing. Moreover,
the training set has been augmented to obtain more
data by making modifications such as horizontal flips,
rotations, blur filters and contrast changes in order to
avoid overfitting. The total number of images in the
training set is now 1393 images. Before each epoch
the training images are randomly shuffled. Each net-
work was trained until convergence, at which no fur-
ther decrease in the loss is observed. The size of a
mini-batch was set to 4 and each image was used
only once in an epoch. We employed the cross-
entropy loss as the objective function for
backpropagation.

3.2. Evaluation metrics

To quantitatively evaluate the precision of our archi-
tecture, we adopted two evaluation metrics that are
most commonly used in the field of semantic segmen-
tation. The first one is the accuracy per class, and the
second one is the IoU (Intersection over Union). The
average values across all the classes for these two
metrics are denoted as mAcc and mIoU, respectively.

mAcc ¼ 1
N

XN

i¼1

TPi
TPi þ FNi

(2)

mAcc is the average value of accuracy on each class
and is calculated using the Equation (2). While IoU is
the intersection of inferred segmentation and ground
truth, divided by the union, and mIoU is the average
value of IoU of each class (Equation 3).

mIoU ¼ 1
N

XN

i¼1

TPi
TPi þ FPi þ FNi

(3)

3.3. Comparative results

In this section we compare the DE-ResUnet architec-
ture to RTFNet [23], MFNet [24], UNet [35], SegNet [37]
and DeepLabv3 [40]. UNet, SegNet and DeepLabv3
architectures are designed for 3-channel RGB images.
Therefore, to compare them to our architecture we
train them with the 4-channel RGB-Thermal data
obtained by stacking the 3-channel RGB data with the
1-channel thermal data. We modify the input layers of
these three networks to adapt them to the 4 channels
RGB-Thermal data. As described in section II of the
paper, we opted to use pre-trained ResNet as the
backbone of our architecture in the two encoders in
order to take advantage of the strength of transfer
learning, which reduces the training time of the model
and improves its performance. Initially, it was neces-
sary to choose which ResNet to use for our task. So,
we tested our model using 3 different types, namely
ResNet-18, 34 and 50. We settled for these three archi-
tectures to avoid the problem of overfitting. As more
layers (101 or 152) can cause overfitting especially in
our case where the database is limited. Figure 7 shows
the superiority of ResNet-50 used as an encoder in our
network compared to ResNet-18 and 34. In the

Figure 7. Comparison between 3 different ResNet as our Network Encoder. The graph on the left illustrates the validation accur-
acy of the 3 models, while the graph on the right represents their validation loss.
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following, all the results represented in the tables and
figures correspond to our network with ResNet-50 as a
pre-trained backbone.

Table 1 displays the quantitative comparative
results for the networks. As most of the pixels in our
images correspond to the unlabelled background, the
evaluation results for the Background class are similar
across the different networks (�99%). They are less
informative in our study because our region of interest
is the foot, which should be segmented with
more precision.

Figures 8 and 9, display some prediction examples
of the data-fusion networks. In general, we can see
that DE-ResUnet can robustly and accurately segment
the feet under various acquisition difficulties and chal-
lenging images.

Several medical studies [41] have shown that cer-
tain areas of the diabetic foot are more prone to
ulceration than others. These areas are called the
high-risk areas for ulceration. Among these areas are
the toes and the heels. Mainly in these zones there is
more pressure while walking. It is therefore necessary
that these areas with a high risk of ulceration should
be very well segmented. Returning to the results, we
notice that our network is more efficient than other
architectures in detecting fine details and delimits
with more precision the toes and heels of the sole.

Based on the quantitative results we can see that
the accuracy values are close between all architec-
tures. Despite the fact that the accuracy is close, we
noticed that the strong point of DE-ResUnet is the
detection of the toes and heels of the feet which rep-
resent the regions at risk of ulceration, and these
details of the feet are not detected by other architec-
tures, despite their high accuracy value. This can be
explained by the use of skip connections that preserve
the finest details in addition to the use of
residual blocks.

Another example is shown in Figure 10 in which
we see DE-ResUnet outperforming RTFNet in the seg-
mentation of the big toe that was not detected by
RTFNet, despite their close IoU values.

We measure the inference speed of the networks
with an NVIDIA Tesla T4 graphics card. From Table 2
we can see that the average time cost of our network
is lower than RTFNet. While UNet remains the most
rapid with an average time cost of 3.35ms.

3.4. Ablation study

The main objective of this work is to demonstrate that
the use of both thermal and colour information will
increase the semantic segmentation accuracy of dia-
betic feet. For this purpose, we carried out an ablation
study, where we compare our multimodal network
DE-ResUnet with two other variants using only thermal
encoder or RGB encoder. Therefore, we test DE-
ResUnet by removing the RGB encoder to see the
benefits brought by using the colour information. We
term the variant T-ResUnet (Thermal-ResUnet).
Similarly, we remove the thermal encoder from DE-
ResUnet to see how the network performs when only
given the RGB information. This variant has no
Thermal Encoder, so we call it R-ResUnet
(RGB-ResUnet).

Figure 11 illustrates the ablation study results. By
comparing the results of R-ResUnet and T-ResUnet, we
find that R-ResUnet generally gives better perform-
ance, but they are both inferior to our DE-ResUnet.
This proves that data fusion is an effective approach
to increase performance. And the RGB information
contributes remarkably to the data fusion. We could
find that only using the RGB information gives better
results in comparison with using only thermal informa-
tion. This is expected because RGB images are more
informative than thermal ones.

4. Discussion

Semantic segmentation of medical images is a chal-
lenging problem and a rapidly growing research topic.
This field in particular requires very high exactitude
and precision. Thermal images are characterised by
the difficulty of detecting tissue boundaries and,
therefore, manual segmentation of these images is
strongly dependent on the observer and is prone to
errors. However, sometimes we deal with thermal
images that are difficult to segment even by an
expert, as shown in the examples in Figure 1. In these
cases, a better strategy is needed. This is the main rea-
son why we thought of integrating the colour image
in our segmentation process. Certainly, RGB visual
images provide detailed morphological information
and a clear delineation of the feet, unlike IR images.

Table 1. Comparative results (%) on the test dataset. The
results for the background class are less informative. (4c)
denotes the use of stacked four channels (RGB and Thermal).

Methods

Background Foot
mAcc mIoU

Acc IoU Acc IoU

SegNet (4c) 99,10 98,12 95,97 92,63 97,54 95,37
UNet (4c) 99,03 98,03 95,90 92,28 97,46 95,15
DeepLabv3(4c) 99,55 98,61 96,21 94,55 97,78 96,58
MFNet 99,13 98,25 96,40 93,12 97,76 95,69
RTFNet 99,11 98,67 96,41 94,60 97,76 96,63
DE-ResUnet (ours) 99,43 98,72 97,39 95,20 98,41 97
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But this does not prevent that in some situations even
the colour images are affected by the light conditions
in the image acquisition room as well as by individual
characteristics such as skin tone, age, gender and
body parts studied. Other factors affect background
colours, shadows and motion blur etc. This creates a
certain complicity between the thermal information
which is not affected by light or skin colour changes
and the RGB information which gives more precise
foot contours.

In this study the data set is characterised by a var-
iety in the subjects’ skin tones, as well as the lighting
conditions and the colours and objects in the back-
ground. This increased the difficulty of our task and

makes our solution robust and adaptable to different
situations. From the beginning, our goal has been to
propose a segmentation approach that does not
require a constrained and well-defined acquisition
protocol such as homogenisation of the background
by polyurethane foam or cold towel as it was the case
in some works [16, 17]. All our images are acquired
freehandedly with a smartphone and its linked ther-
mal camera. Moreover, this approach did not require
any preprocessing of the training data set. Unlike [16,
20, 21] who prepared their images by partitioning
them to use a single foot and a single orientation
instead of processing the whole image with both right
and left feet. In this paper we proposed a

Figure 8. Illustrative example showing the input thermal image and the predictions achieved by all the networks. Ground truth
mask is represented by the green outline.

Figure 9. Illustrative example showing the robustness of DE-ResUnet and DeepLabv3 in the precise delineation of fine details of
toes and heels of the feet.
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Table 2. The Inference speed for each network. ms represents the time cost in milli-
second and the FPS represents Frame-Per-Second.

Methods

Tesla T4 GPU

Ms FPS

SegNet (4c) 4.75ms 210.53
UNet(4c) 3.35ms 298.91
DeepLabv3(4c) 11.6ms 86.08
MFNet 6.76ms 147.89
RTFNet 15.78ms 63.36
DE-ResUnet 11.89ms 84.08

Figure 11. Illustrative example showing the input images (RGB and thermal) and the final prediction of DE-ResUnet and its two
variants T-ResUnet and R-ResUnet. T-ResUnet is the network with thermal encoder only and R-ResUnet contain RGB encoder only.
Whereas DE-ResUnet is our Double encoder proposed approach.

Figure 10. Example in which DE-ResUnet is able to segment the foot with the toes in comparison with RTFNet. Left image repre-
sents thermal image with ground truth mask overlaid. The image in the middle represents DE-ResUnet prediction and right image
represents RTFNet [24] segmentation.
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segmentation approach that combines the strength of
both UNet and ResNet architectures on one hand and
on the other hand merges both thermal and RGB
image types. The goal is to improve the accuracy and
performance of segmentation of the foot. We com-
pared our architecture to other state-of-the-art
approaches, such as SegNet, UNet, DeepLabv3, RTFNet
and MFNet to evaluate the performance of this archi-
tecture. And according to the quantitative evaluation,
we deduced that DE-ResUnet showed the best
performance.

Although the accuracy values of all the approaches
are close, we noticed a very important point about

DE-ResUnet, in several test images we can see that
our network is able to detect parts of the foot such as
toes and heels with a very high precision compared to
other architectures, Figures (10,12–14). This is a strong
point of DE-ResUnet that could be an added value
especially since toes and heels are the most suscep-
tible regions to be ulcerated. This can be explained by
the use of skip connections that preserve the finest
details in addition to the use of residual blocks that
make the deep network easy to train and helps to
propagate the information without degradation,
improving the neural network design by decreasing
the parameters with comparable or increased

Figure 12. Illustrative example in which DE-ResUnet accurately segments the heels of the feet in comparison with a state-of-the-
art method "MFNet". left image is thermal image with ground truth. our network prediction is presented in the middle image and
right image is the result of MFNet [24].

Figure 13. Example of a difficult image to segment due to the ambiguity between the cold heel and the background. DE-
ResUnet performs better than the original UNet [36] and can segment the heel correctly. Left image corresponds to thermal
image with overlaid mask, in the middle DE-ResUnet and the right one corresponds to UNet (4c).
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performance on the semantic segmentation task. We
also performed an ablation study, in which our object-
ive was to prove that the use of both thermal and
RGB images probably improves the accuracy of
semantic segmentation of the foot. For this purpose,
we compared our multimodal network DE-ResUnet
with its two other variants using only a thermal
encoder or RGB encoder.

By comparing the results of R-ResUnet and T-
ResUnet, we find that R-ResUnet generally gives better
performance, but they are both inferior to our DE-
ResUnet. This proves that the data fusion is an effect-
ive approach to increase the performance. And the
RGB information contributes remarkably to
data fusion.

One of the difficulties we encountered during our
study is that we could not make more image acquisi-
tions in hospitals for a larger number of patients, due
to the health situation related to covid 19 worldwide.
Therefore, we were initially limited to the data set that
we collected before the pandemic. Our database con-
sists of images corresponding to diabetic patients and
also healthy people.

In addition, our work is ongoing, on one hand
acquiring more images and increasing the size of our
multimodal database that will be in the future shared
in public for scientific research. On the other hand, we
are working on a medical study in which we’ll require
healthy subjects as well as pathological subjects who
are affected by diabetic disorders. The images of the
healthy subjects will be used to represent the normal-
ity of the temperature patterns. In contrast, the
images of the pathological subjects will aim to

establish a relationship between the temperature pat-
terns and the underlying diabetic condition.

5. Conclusion

This paper proposed a new multispectral segmenta-
tion architecture (DE-ResUnet) compared with five
other Deep Learning methods for the segmentation of
diabetic foot thermal images. The comparison per-
formed on our test database showed the superiority
of DE-ResUnet with a mIoU of 97%. This proposed
method is robust, provides good results and has dem-
onstrated its effectiveness in segmenting both feet
simultaneously with high precision. In addition, no
constraining isolation system is required, the images
are taken freehandedly with a smartphone equipped
with a dedicated thermal camera, and the processing
is fully automatic. As a perspective, a future study is
planned to provide a more rigorous test of the system.
This will comprise a larger study population and will
also include participants with partial amputations.
Furthermore, it would be interesting to show that this
suggested friendly and automated segmentation
method combined with other medical analyses could
help doctors in hospitals or in medical centres for a
better diagnosis of DF disorders.
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