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Abstract. Accurate assessment of diabetic foot ulcers (DFU) is pri-
mordial to provide an efficient treatment and to prevent amputation.
Traditional DFU assessment methods used by clinicians are based on
visual examination of the ulcer by estimating the surface and analyzing
tissue conditions. These manual methods are subjective and make direct
contact with the wound, resulting in high variability and risk of infec-
tion. In this research work, we propose a novel smartphone-based skin
telemonitoring system to support medical diagnoses and decisions during
DFU tissues examination. The database contains 219 images, for effec-
tive tissue identification and annotation of the ground truth, a graphical
interface based on superpixel segmentation method has been used. Our
method performs DFU assessment in an end-to-end style comprising au-
tomatic ulcer segmentation and tissue classification. The classification
task is performed at a patch-level, superpixels extracted with SLIC are
used as input for the training of the deep neural network. State-of-the-
art deep learning models for semantic segmentation have been used to
perform tissue differentiation within the ulcer area into three classes
(Necrosis, Granulation and Slough) and have been compared to the pro-
posed method. The proposed superpixel-based method outperforms clas-
sic fully convolutional network models while improving significantly the
performance on all the metrics. Accuracy and DICE index are improved
from 84.55 % to 92.68 % and from 54.31% to 75.74% respectively for
FCN-32. The results reveal robust tissue classification effectiveness and
the potential of our system to monitor DFU healing over time.

Keywords: Deep Learning · Fully Convolutional Networks · Superpixel
Segmentation· Diabetic Foot Ulcer· Tissue Classification· SLIC.

1 Introduction

Diabetes is a chronic disease characterized by abnormally high levels of glucose
in the blood. At present, almost half a billion people worldwide suffers from
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diabetes. Poorly managed diabetes leads to several complications including car-
diovascular disease, kidney disease, eye complications, nephropathy, lower limb
ulcers, etc. Diabetic foot ulcers (DFU) are the most chronic and severe compli-
cation of diabetes associated with neurological disorders and peripheral vascular
disease leading to millions of amputations every year. A lower limb is lost to
amputation every 30 seconds somewhere in the world due to diabetes [4]. This
diabetes related complication has a significant impact on individuals’ life qual-
ity and imposes a high social and economic cost. However, if an appropriate
management of these ulcers is achieved, lower limbs amputation can be delayed
or prevented altogether. Diabetic foot ulcers should be regularly checked by
healthcare professionals for clinical care and to evaluate the healing progress. In
standard clinical practice, the examination of ulcers is mainly based on physical
measurements and visual assessment of the skin tissues [5]. Manual methods rely
on the use of a simple ruler to measure ulcer perimeter (length and width), an
outline over a transparent sheet to calculate the surface area and physiologi-
cal serum for volume estimation [13]. Moreover, these methods are invasive and
in direct contact with the wound bed which carries high risk of infection. On
the other hand, analyzing color and proportion of the tissues help to determine
the healing progress of the ulcer and provide quantitative measurement without
contact. Within the ulcer boundaries, visual inspection is based on red-yellow-
black color evaluation model corresponding respectively to the different tissues:
granulation, slough and necrosis [29]. However, determining the exact propor-
tion of each tissue through a visual exam is prone to inter-expert variability.
In order to provide an accurate diabetic foot ulcer management, using image
analysis became an attractive option to help clinicians for an accurate and ob-
jective assessment of the ulcer especially with the spread of smartphones with
high resolution cameras and powerful processors. Imaging technologies allow low
cost, non-invasive, fast and automatic assessment. The principal objective of this
work is to develop an automatic smartphone-based system for ulcer segmenta-
tion and tissue identification. This work is part of the STANDUP project [1]
which aims to prevent diabetic foot ulceration in an early stage and to monitor
in an efficient way the ulcer healing over time. In order to provide a robust tissue
classification, we propose a novel superpixel-based approach for automatic tis-
sue analysis using deep learning methods. The final system can serve as effective
tool to support medical diagnoses and decisions during DFU examination to en-
sure an accurate management of lower limb lesions. Moreover, this methodology
is applicable to other wound conditions such as pressure injuries, surgical and
traumatic wounds,venous ulcers, etc.

2 Related work

In recent years, the use of smartphones and imaging technology in daily clinical
practice, especially towards wound and DFU assessment has increased consid-
erably. Clinicians can obtain additional information about the wound charac-
teristics from digital image processing to improve diagnostic accuracy. Several



A Superpixel-wise DL Approach for DFU Tissue Classification 3

image processing studies have addressed wound segmentation using different ap-
proaches. Mainly, these methods are based on supervised traditional machine
learning (ML) especially SVM classifiers. ML algorithms require handcrafted
features extracted from images using different texture and color descriptors fol-
lowed by SVM [25, 28]. Nevertheless, descriptors can be influenced by image
resolution and require a color correction step using a reference pattern inserted
in the field of view. Although their performance, ML methods are not robust
enough due to their reliance on the handcrafted features. Recent approaches in-
volve more sophisticated methods such as deep learning. Including convolutional
neural networks (CNN) for classification or fully convolutional neural networks
(FCN) for semantic segmentation. The training of these networks requires the
use of a large labeled dataset. In [24], Wang et al. proposed a new deep learning
architecture based on en-coder-decoder to perform wound segmentation using
650 images from NYU database [21]. On a different approach, Goyal et al. [11]
developed a new DL model called DFUNet to classify DFU sub-images into
normal and abnormal skin using 397 images. The proposed network DFUNet
outperforms GoogLeNet in all the evaluation metrics. In a recent work [12], the
same authors used a two-tier transfer learning model combining R-CNN with
Inception-V2 to localize DFU with a precision of 91.8%.

Regarding tissue classification, most of the methods found in the literature
use traditional machine learning algorithms. Mukherjee et al. [15] performed
wound tissue classification using five color and ten textural features followed
by a 3rd polynomial kernel SVM. In a different approach, Hazem et.al. [27]
proposed a multi-view tissue classification using 3D model and SVM. Due to
the lack of annotated images in the biomedical field and especially for chronic
wounds (CW), few studies have been conducted using DL methods for wound
tissue classification. In [10], the authors used 30 wound images to perform tissue
segmentation using the fully convolutional net-work U-net designed for small
medical image databases [19]. The network was initialized with a pre-trained
VGG-16 [8]. The results show an accuracy of 94% and 96% after a color space
reduction. Zahia et al. [30] presented an approach to handle small datasets in DL
through patch-level tissue classification. Their approach was based on partition-
ing 22 images into small 5x5 patches that have been used to train the proposed
convolutional network. The achieved performance was relatively high with an
accuracy of 92.01%. Similarly, Nejati et al. [16] performed tissue classification
on a patch-level but with combining ML and DL methods. The dataset contains
350 images partitioned into 20x20 patches. AlexNet has been used for feature
extraction and SVM to classify each patch into the corresponding tissue class.

Unlike existing approaches using square patches, we used homogeneous su-
perpixels instead. Superpixels have more perceptual meaning since pixels belong-
ing to a given superpixel share similar tissue properties. In a recent work [7],
Blanco et al. proposed a superpixel-driven method called QTDU using the CNN
ResNet for dermatological wounds tissue classification. The method, outper-
formed different machine learning approaches. In contrast, our premise is to
perform superpixel-based diabetic foot ulcer tissue classification at pixel-level
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Fig. 1. Some images from ESCALE database (a) and corresponding ground-truth (b).

using fully convolutional neural networks for a more accurate and precise tissue
identification.

3 Proposed Method

Our approach is divided into two steps: first, the automatic extraction of the ulcer
area eliminates all background elements that may threaten the classification.
This ulcer segmentation is useful for perimeter and surface assessment based on
a pattern included in the field of view for fixing the image scale factor. Secondly,
tissue classification is performed to identify the different tissues within the ulcer
area after superpixel extraction.

3.1 Image Acquisition and Data Annotation

A database of diabetic foot ulcer images has been constituted in two hospi-
tal centers, Hospital Nacional Dos de Mayo (Lima, Peru) and CHRO Hospital
(Orleans, France). The acquisition protocol consists on capturing free-handedly
a set of images using a smartphone camera while framing the ulcer area from
a point of view as frontal as possible. Chronic wound images from ESCALE
database [26] were also added to the training set. The images are with different
resolutions, acquired using different cameras and under different illumination
conditions. The whole database comprises 219 images with variety of types of
chronic wounds including leg ulcers, diabetic ulcers, bed sores, etc. The database
has been labeled by medical experts into three main types of tissues using the
graphical interface proposed in [17] based on the red-yellow-black usual model.
Fig. 1 shows some examples of wound images multi-class annotation.

3.2 Ulcer Segmentation and Superpixels Extraction

The first stage of our method is ROI extraction. This step is meant to extract
the ulcer area from healthy skin and to eliminate background elements. The
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Fig. 2. Diabetic foot ulcer segmentation framework

background removal aims to highlight the tissues features inside the wound bed
in order to simplify the classification task. The segmentation was performed using
U-net, which achieved an accuracy of 94.96% and a Dice score of 97.25% [18]. To
refine the segmentation results, we combined different morphological operations
(i.e., erosion, dilation, opening, and closing) [23]. Then, the non-ulcer region has
been represented by a white background in the original images and corresponding
ground-truth. Mainly, the wound area especially for DFUs represents less than
30% in most images. Hence, using the entire image as input for the training of
the network is unnecessary. Therefore, we cropped the ROI in all images and
their annotations to focus the training on the wound area only (see Fig. 2).

To extract superpixels from the segmented wound, we adopted simple linear
iterative clustering (SLIC) [2] which relies on k-means method to generate an
efficient image partition into homogeneous clusters by combining (R,G,B,X,Y)
five-dimensional color and image plane space. Superpixel extraction from the
ROI was provided using the zero-parameter version of the SLIC algorithm called
SLICO. Instead of using the same compactness parameter initialized by the user
for all superpixels in the image, this method adaptively changes the compact-
ness parameter for each superpixel depending on its texture [3]. The result is
regularly shaped superpixels regardless of the texture while conserving a high
computational efficiency. The obtained superpixel segmentation map is then ap-
plied to the ground truth image in order to generate the annotation label of each
sub-image. After superpixels split, only the ones corresponding to a single tissue
and their corresponding label were conserved and all totally white superpixels
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Fig. 3. Superpixel extraction from the segmented DFU image using SLIC

were removed for an efficient training. Finally, the superpixels were cropped and
resized to 224x224 resolution (see Fig. 3).

3.3 Superpixel-based Tissue Classification

Our objective is to classify DFU tissue at a pixel level into three main classes
combining deep neural networks and superpixels. The segmentation was per-
formed using the state-of-the-art deep neural networks for semantic segmen-
tation called as Fully Convolutional Neural Networks. These networks replace
the fully connected layers in the classification models with convolutional layers
which allow a pixel-wise prediction. A class label is assigned to each pixel of the
image. The typical architecture for semantic segmentation is encoder-decoder
and it consists of an encoder network followed by the corresponding decoder. U-
Net [19], SegNet [6] and FCN-Net [14] are the most used algorithms for semantic
segmentation in the field of medical images. U-Net proposed by Ronneberger et
al. is specially designed for small databases segmentation and produces precise
segmentation using few images for training. SegNet is an encoder-decoder net-
work identical to the convolutional layers in VGG16 [22] adapted for semantic
segmentation, the encoder network is considerably reduced which make it com-
putationally efficient. FCN-32, FCN-16, and FCN-8 are the three main variants
of FCN-Net based on a pre-trained VGG16 network as encoder. FCN-32 is same
as VGG16 in which fully connected layer of VGG16 is replaced by a 1x1 con-
volution. FCN-16 and FCN-8 additionally work on low-level features by adding
decoder layers to the network in order to produce more precise segmentation.

The generated superpixels with SLIC were used as input to feed these fully
convolutional neural network models. (Fig. 4) illustrates the proposed frame-
work based on an FCN-32 architecture. In the model training, we adopted a
large-scale dataset with over 5000 wound superpixel and corresponding ground
truth without any data augmentation. The output of the proposed method is a
semantic segmentation of each superpixel. The model evaluation for DFU tissue
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Fig. 4. Overview of the proposed fully convolutional network architecture based on
super-pixels

classification of an entire image is done into three steps. Initially, the ulcer is
segmented and split into superpixels similarly as presented in the previous sec-
tion. Then, the generated superpixels and their corresponding labels are cropped
and resized. Secondly, each superpixel will be given to the trained network for
prediction to get the segmentation map. Thirdly, a class label will be assigned
to each superpixel depending on its dominant color (red, yellow or black). The
non-tissue superpixels such as bones will be classified as unknown and repre-
sented by a white color. Finally, an output image will be reconstructed based
on the superpixel classification and the final result is a segmentation map of the
different tissues inside the wound bed.

4 Results

4.1 Performance metrics

We evaluated the performance of the proposed method using the most common
metrics in the field of medical image segmentation. These metrics are accuracy,
sensitivity, specificity, precision, and dice similarity coefficient (DICE) [9]. The
formulas are defined respectively as the following:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

DICE =
2TP

2TP + FP + FN
(5)

Where TP, FP, TN and FN stand for the number of the true positive, false
positive, true negative and false negative classified pixels.
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Table 1. Number of superpixels for the training and testing set

Training Testing

Granulation 2872 762
Slough 1897 594

Necrosis 463 155
Unknown 24 19

4.2 Experimental Results

The database containing the generated superpixels and their labels was divided
into training and testing set. The partition percentage was around 75% for the
training, and 25% for the testing as shown in (Table 1). The evaluation aimed at
quantifying the improvement of the of state-of-the-art FCNs using the proposed
superpixel based approach (Spx) in comparison to their classic version and de-
termining the most suitable network to perform tissue identification of diabetic
foot ulcers. Accordingly, The different models have been trained on the same
chronic wound database and tested using only DFU images. The methods were
implemented in Keras with TensorFlow backend using the stochastic gradient
descent (SGD) optimizer [20] and a learning rate of 0.01.

Table 2 lists the segmentation results of all the tested methods regarding the
accuracy, sensitivity, specificity, precision and DICE. The proposed superpixel-
based approach outperformed all the state-of-the-art methods. It shows a higher
performance for all the computed metrics. As we can see, the results were con-
siderably improved by the usage of superpixels instead of the whole image as
training set. This demonstrates the effectiveness of combining SLIC superpixels
and FCN as it is capable of performing a more precise semantic segmentation of
tissues.

To choose the most suitable network, we selected the best performances of Ta-
ble 2. Spx-FCN16 and Spx-FCN32 achieved the best results for all the computed
metrics, SPX-FCN32 was slightly better than Spx-FCN16 regarding Sensitivity,
Specificity, precision and DICE and it achieved a higher accuracy. A fusion of
superpixels and FCN-32 improved accuracy by 8.13% to reach 92.68% and led
to a high DICE score of 75.74% instead of 54.31%. Fig. 5 shows some examples
of DFU tissue segmentation output for both approaches. We also investigated
how the method performed on each tissue type. Detailed classification results
for necrotic, granulation, and slough tissues using the superpixel-based FCN-32
variant can be seen on Table 3. The results on specific tissue types indicate
that necrotic class performance is inferior when compared to slough or granu-
lation tissue. Necrosis appears to be the most difficult to be identified by the
network. This could be justified by the number of superpixels per class during
the training phase which lead to wrong pixel classification of this tissue. Necrosis
represents only 9% of the training set comparing to 54% for granulation and 36%
for slough. Therefore, the performance results for non-necrotic classes is reliable
and reflect a significant improvement in wound tissue segmentation. Unlike the
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Table 2. Tissue segmentation results of FCNs vs. Spx-based FCNs

Accuracy Sensitivity Specificity Precision DICE

SegNet 58.6% 36.4% 82.2% 43.7% 33.2%

Spx-SegNet 79.2% 65.9% 93.3% 72.2% 67.1%

UNet 69.56% 55.1% 87.6% 68.7% 57.5%

Spx-UNet 80.75% 68.3% 94% 74.8% 69.2%

FCN8 69.37% 61% 90% 63% 60.3%

Spx- FCN8 81.92% 74.5% 93.6% 78.7% 73.7%

FCN16 72% 57.7% 90.6% 62.9% 56.1%

Spx- FCN16 83.67% 75.4% 94.2% 76.9% 75.5%

FCN32 84.55% 54.68% 89.32% 62.08% 54.31%

Spx- FCN32 92.68% 74.53% 94.39% 78.07% 75.74%

existing methods in literature which deal with slough tissue due to the different
textures related to it, our method is capable of segment it with the highest DICE
score of 77.5%.

Table 3. Classification results for each tissue using the proposed Spx-FCN32 method

Sensitivity Specificity Precision DICE

Necrosis 51.55 % 99.01 % 70.94 % 59.71 %

Slough 84.63 % 91.89 % 71.48 % 77.50 %

Granulation 69.68 % 95.81 % 76.01 % 72.71 %

Moreover, by observing the qualitative results (see Fig. 5), we can clearly
notice that the method based on superpixels produces an accurate segmentation
with a very high precision regarding the three classes (Granulation, Necrosis
and Slough). The tissue segmentation precision was significantly improved using
superpixels instead of the entire image to train the FCN-32 network. In addition,
the identification of non-tissue pixels corresponding to bones inside the ulcer area
(see Fig. 5, sample 6), is a statement of our method robustness.
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Fig. 5. DFU tissue segmentation results: (a) original image, (b) segmented image, (c)
output of FCN-32, (d) output of the proposed Spx-FCN32, and (e) Ground truth.
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Conclusion

We presented a novel approach for automatic diabetic foot ulcer segmentation
and tissue classification. The proposed classification method was performed by a
superpixel-based semantic segmentation using fully convolutional networks. The
experimental tests show that the proposed image segmentation method exhibits
higher performance than the existing state-of-the-art FCN methods regarding all
the metrics and demonstrate the robustness of our method especially for slough
and granulation tissue. Furthermore, we intend to expand our database by ac-
quiring new high-quality wound images with different tissue types in order to
improve tissue identification for all classes especially necrotic one. In addition,
our system is embedded into a smartphone with add-on temperature sensor.
Assessing the wound temperature can help to localize sign of deep inflamma-
tion and infection and to identify the DFU type (neuroischemic or neuropathic)
as well. The proposed system could be used by clinicians during diabetic foot
examination for an accurate and complete assessment from ulcer delineation,
surface and temperature measurements to tissue area identification and analy-
sis. This system can be extended to the assessment of chronic wounds such as
burn wounds, pressure injuries, etc.
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