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Abstract

The use of a thermal camera to detect abnormal plantar foot temperature changes can be an effective way to identify
the early signs of diabetic foot (DF) ulceration. In this work, we performed the affine registration of the plantar foot
thermal 1images using four methods based on convolutional neural networks. These methods include two parts: an affine
registration model for estimating transformation parameters and a spatial transformer for getting the registered image. The
performances of the four models were evaluated using the Dice similarity coefficient (DSC), Mean Square Error (MSE),
and peak signal-to-noise ratio (PSNR). In the first step, Methods were applied to register the left and right feet of the same
subject, called "contralateral registration” and in the second step, the methods were evaluated on a pair of images of the
same subject taken in two different times (TO and T10) using a cold stress test protocol. Results showed that the used
convolutional neural networks are more robust in both types of registration (contralateral and multitemporal), and they are
suitable for our database of thermal images of DF, with the Dice score of 95 % for contralateral registration and a Dice
score of 92 % for multitemporal registration.Futhermore, a transversal clinical study was perform on diabetic patients,
that classified individuals into ischemic and non-ischemic groups. The objective was to analyze the coherence between the
thermal results and medical data. The mean absolute point-to-point temperature difference |AT| between left and right foot
is lower in non-ischemic patients than in those with ischemia, with a significance level of p<0.05. This result indicate that
using thermal camera temperature assessment could help in the diagnosis of diabetic foot.

Keywords: Plantar foot thermal images, Deep learning, thermography, Medical images affine registration,

convolutional neural network.

1 Introduction

People with diabetes are susceptible to a range of
complications that affect multiple organs like the eyes
(blindness), the nervous system (neuropathy), the
kidneys (nephropathy) , and particularly the lower
limbs known as the diabetic foot (DF) [1, 2] which
represents the core of our work. Reduced blood
flow to the feet can lead to untreatable ulceration
that is preceded by inflammation or infection. In se-
vere cases, it can lead to the lower limb amputations.
According to diabetes experts, the occurrence of an
ulcer is often associated with a temperature variation
which can be identified using a thermal camera [3],
that appears to be a useful predictor of foot ulcer-
ation. Numerous studies have shown a correlation
between increased temperature in plantar foot of a
individual and diabetic foot (DF) complications [4, 5].
Furthermore, the detection of abnormal plantar foot
temperature of individuals with diabetes can serve
as an early indicator of infection or ulceration in di-
abetic feet (DF). The most commonly used criterion
is the point-to-point temperature difference |AT| of
the corresponding area of the right and left foot, if
it is greater than 2.2 [6] , this can be an indicative of
abnormality. This is called hyperthermia as shown in

Fig.1 with a high |AT| in the region of ulcers (yellow
and red region) for the left foot of the person.

Figure 1: (a) Original thermal image of the DF subject with
ulcer on the left foot. (b) Thermal difference Map AT.

(a) (b)

Thermography is a non-invasive and contactless
technology that allows visualization of a precise tem-
perature distribution. In this context, the thermal
images are taken using a friendly and mobile acquisi-
tion protocol based on a smartphone equipped with
a dedicated thermal camera (FLIR ONE Pro)[7] .

The first step of the full automatic processing of
the data is the segmentation [8, 9, 10] which consists
in separating the plantar foot thermal image from the
rest of the background. The second is the registration
process for aligning the two feet and detecting the
hyperthermia areas that are the core of our work. In
[11], the authors used a classical rigid registration
method which is the Iterative Closest Point (ICP) to
register the two feet that have two transtormations
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translation and rotation. However, As a result of
changes in the capture viewpoint and camera dis-
tance between the acquisitions at time Ty and Ty,
the rigid registration methods were found to have
limitations, as reported by [12]. In this context, ad-
ditional transformation parameters such as shearing
and scaling are required. This type of transformation
is known as affine registration, which aims to predict
the matrix transformation T to align two feet with
varying acquisition conditions.
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(1) where a,y, ap, ay and as represent relations with
parameters of rotation, shearing, and scaling. a3 and
ag represent translation parameters according to x
and y axes, respectively.

In recent years, deep learning techniques have
made a significant role in the development of mod-
els for medical image affine registration, particu-
larly those based on convolutional neural networks
(CNNis). Several CNN models have been developed
for affine registration. The Self-Supervised Affine
Registration (AIRNet) framework proposed by Chee
et al. [14], which uses the use of two separate CNNs
to predict the transformation matrix. One of the
CNNis takes the fixed image as input, while the other
takes the moving image as input. Another recent
approach proposed by Tang et al. [15] is the unsu-
pervised end-to-end Affine and Deformable Medical
Image Registration (ADMIR) framework,which con-
sists of two networks: Affine ConvNet for affine
registration and a U-net architecture for deformable
registration [16, 17]. The Affine ConvNet architecture
uses a single network that recieves the concatenation
of moving and fixed image to predict the transforma-
tion parameters.

Furthermore, the authors in this study used two
well-known CNN architectures, namely the Visual
Geometry Group with 16 layers (VGG-16) [18] and
Densely Connected Convolutional Networks with 121
layers (DenseNet121) that was introduced by Huang
et al [19, 20], for the task of affine registration. the
concept is to incorporate these architectures with
fully connected layers to enable the prediction of
transformation parameters. Once this parameters
have been predicted , the moving image is registered
to the fixed image using a spatial transformer (resam-
pler) adapted from VoxelMorph [21], which make
the moving image and the fixed image fully aligned.
Overall, The approach proposed in this study com-
bines the pre-trained CNN architectures and spatial
transformers to achieve precise and efficient affine
registration of diabetic plantar foot.

In this paper, we performed plantar foot reg-

istration using the convolutional neural networks
specifically AIRNet, Affine ConvNet, Vggl6 and
DenseNet121 to obtain two fully registered feet im-
ages. The authors compared the performance of
these CNN models for both types of registration. In
order to calculate the temperature difference |AT]|
between contralateral and multitemporal feet (Sec-
tion.3), which is important for thermal monitoring
analysis. In addition to the affine registration of the
plantar foot, we will present the results of a transver-
sal clinical study on diabetic patients divided into
two groups based on the presence or absence of is-
chemia. In order to analyze the coherence between
the thermal results that we obtain and the medical
data obtained by doctors.

The remaining part of this study is organized as fol-
lows. Section.2 describes The architectures of the four
Convolutional neural Networks of affine registration.
Section.3 presents the process of affine registration
for plantar diabetic foot using convolutional neural
networks (CNNss), including image acquisition and
preprocessing. Section.4 presents registration results
of the tested methods, for contralateral and multi-
temporel feet and for the last task, Section.5 shows a
transversal clinical study on diabetic patients classi-
fied in ischemic and non-ischemic groups. Finally, in
section. 6, we conclude and suggest some directions
for future work.

2 Convolutional neural networks
for affine registration

Convolutional neural networks are a type of neu-
ral network that has shown good results for image
classification and registration. It has contributed to
increase the performance of registration of medical
thermal images. For Affine registration, the CNN
models consists of obtaining a transformation
matrix T, in order to align two images (fixed and
moving images) with the application of spatial
transformation.

A fundamental CNN architectures is a combination
of convolution layers which extract different features
and pooling layers to reduce the size of the image
and the number of parameters which can reduce
computational complexity. Then, a fully connected
layers predict the transformation parameters using
the extracted features. Affine registration networks
are generally constructed into two ways, one
approach is to use a two-pathway network and
Another approach contains a single pathway encoder
that they receive the concatenation of the images.
Therefore, the registration methods chosen in this
paper are AirNet, Affine ConvNet, and two other
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models based on VGG16 and DenseNet121. In the
following, we will present the details of these four
affine registration architectures.

2.1 AIRNet architecture:

The encoder of AIRNet architecture (Fig.2) consists
of two separate subnetworks that share the same
parameters, the first one takes the fixed image F as
input, while the second receives the moving image
M, These subnetworks are adapted from the 2D
DenseNet model [19].

The model comprises 6 of 2D convolutional
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Figure 2: AIRNet Architecture.

layers using small x1 convolution filters and
max-pooling layers which followed by a activation
function (relu) and dense blocks as shown in Fig.3.
A convolution and pooling layer is used before
flattening the features that the outputs of the encoder
are concatenated and passed them into several fully
connected layers. Each layer of these fully connection
layers is composed of linear layers and relu activation
functions to produce the transformation matrix.
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Figure 3: Dense block with one Dense layer.

2.2 Affine ConvNet architecture:

This architecture contains one subnetwork instead of
two subnetworks to obtain the matrix of the transfor-
mation that the encoder received the concatenation
of the moving (M) and fixed image (F) (Fig. 4).

The model consists of a series of 6 stridden
convolution layers 3 x 3 convolution filters with a
stride of 2, followed by a relu activation function.
For the full connection part, each layer consists of
linear layers and relu activation functions to estimate
the six parameters of transformation to generate the
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Figure 4: Affine ConvNet Architecture.

2.3 VGGI16 architecture:

VGG16 is a convolutional neural network architec-
ture that receives the moving and duplicate fixed
image (3-channels). It consists of 5 blocks, where
each block contains two or three convolutional layers
followed by a max pooling. The convolutional layers
use small 3 x 3 filters with a stride and a padding
of 1.Then ,the max pooling layers have a 2 x 2 filter
and a stride of 2 for decrease the spatial size of the
feature as demonstrate in Fig.5.

To adapt VGGI16 for predicting six transformation
parameters for the matrix T, the fully connected
layers at the top of the network are removed,
and a new dense layer and RelLU activation is
added. This layer is followed by a final dense
layer with 6 outputs which producing the trans-
formation parameters that formuled by the matrix T.
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Figure 5: VGG16 Architecture.

2.4 DensNetl121 architecture:

The DenseNetl121 architecture is based on the con-
cept of densely connected layers, where each layer is
connected to every other layer in a feedforward way.
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This architecture receives the moving and duplicate
fixed image (3-channels) as input and is comprised
of four dense blocks, with a transition layer between
each pair of dense blocks. The architecture has a total
of 121 layers, as depicted in the [19].

Each dense block has several convolution layers with
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Figure 6: DenseNet121 Architecture.

fillers of 3 x 3 and 1 x 1 followed by a batch normal-
ization layer and a ReLU activation function(Fig.3),
and each transition layer has convolution layer with a
small 1 x 1 filters and average pooling layer. Contrary
the traditional CNNs, that only link output of one
layer to the input of the subsequent layer, DenseNet
connects all preceding layers to each subsequent layer,
, allowing for the combination of feature maps from
all preceding layers, which are then used as input for
any successive layer as described Fig.6.

To adopt DenseNet121 for image affine registration,
we remove the fully connected layers at the top of
the network. Then, the outputs from the final dense
block are concatenated and passed through a new
dense layer and RelLU activation, that is followed by
a final dense layer with 6 outputs, which produce the
transformation matrix.

3 Methodology

3.1 background

Several studies have shown that the most common
techniques used for analyzing diabetic foot thermo-
grams are asymmetric and external stress analysis.
Asymmetric analysis [5, 22, 23, 24] consists in ana-
lyzing skin temperature distribution in the left and
right foot of a patient to detect any asymmetry that
may indicate hyperthermia and potential foot ulcers.
Research has revealed that a temperature variation
between the two feet(left and right) greater than 2.2
is a sign of an ulcer in diabetic foot (DF). On the
other hand, external stress analysis [5, 25] consists in

observing the response of the body’s thermoregula-
tion system after the application of specific stress. In
[9] , researchers evaluated the relationship between
plantar foot temperature variation and cold stress
test applied on diabetic patients. They performed a
multitemporal analysis by calculating the tempera-
ture difference of the same foot at two different times
(time (Tp and 10 minutes later called timeTjy).
Through these thermal analysis, several pre-
processing steps were required for the foot thermo-
grams. The first step consists in segmenting the two
feet from the rest of the background (Fig.9). The
second is registration, which consists aligning each
pixel of the two segmented feet to calculate the ab-
solute temperature difference point-to-point using
either the asymmetric (contralateral) or the multi-
temporal analysis. In this work, we aim to perform
plantar foot registration using CNN architectures to
obtain registered foot thermal images, in order to
calculate the temperature difference |AT| between
the contralateral and multitemporal feet.

3.2 Image acquisition and preprocessing

The thermal images of plantar foot are taken using a
smartphone ( Galaxy S8) equipped with a dedicated
thermal camera FliROne Pro. In this section, we will
first discuss the rationale behind our choice of this
thermal camera. then we will describe the acquisition
protocol of our thermal images.

The chosen camera: The FliROne Pro is a high-
resolution thermal camera that has two sensor: the
first is a thermal sensor that has the ability to capture
thermal images at a resolution of 160 x 120 pixels and
a spectral range of 8-14 m and the second is an RGB
sensor designed to acquire visible images in parallel
with the thermal core. This thermal camera can de-
tect relative temperature differences of 0.1 making it
suitable for detecting abnormal temperature of 2.2 in
DFE. It can be easily attached to a smartphone which
makes it convenient for clinical setting use.

Acquisition protocol. To create our dataset of ther-
mal images of plantar feet, we followed two acquisi-
tion protocol:

a) Single acquisition: patients are first subjected to
a medical examination. Following this examination,
they are then requested to rest barefoot for a 15-
minute interval to allow the feet to regain their nor-
mal temperature. Once the 15-minute resting period
has elapsed, thermal and RGB images of the feet are
acquired [18]. As detailled in Fig.7.

b) Cold stress test acquisition: After the patient
signed the informed consent form, we provided them
with a 15-minute rest period to allow their feet to
return to their normal state. During this time, the
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Figure 7: Single acquisition (Contralareral Acquisition).

patient was instructed to lie down on a stretcher with
their feet placed at the end in a vertical position, with
a distance of 10 cm between them. Baseline thermal
and RGB images were captured using acquisition
system. Following this, the patient was asked to
immerse their feet, which were covered with thin
plastic, in water at 15°C for 60 seconds. After 10 min-
utes(time T7p, a new plantar thermal and RGB image
was taken. Then, two images of the same patient at
two different times are taken [9]. As depicted in Fig.8.
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Figure 8: Cold Stress Test Protocol (Multitemporal Acquisi-
tion).

Data preprocessing Our dataset was generated
from two groups: The first group, consisting of 102
healthy individuals who were not diabetic. The sec-
ond group was comprised of 145 diabetic patients
who agreed to participate in this study at the Diabetic
Foot Service of the National Hospital Dos De Mayo
de Lima in Peru [22]. The images of diabetic patients
were captured under the supervision of specialists
and diabetologists, using the cold stress test protocol,
that two thermal images were taken at two different
times for each patient, as shown in Fig.8.

After these acquisitions, The first step to build our
the data consists in segmenting the plantar foot and
separating them from the rest of the background by
applying the ground truth to the thermal images
(Fig.9). In this study, we carried out of two dataset:
the first one is for a contralateral registration, which
consists of aligning the right and left feet of the same
patient image. And the second is for a mulitemporal

(a) (b)

Figure 9: (a) Thermal Image, (b) Segmented image.

registration that applied on a pair of images of the
same feet acquired in two different moments (T and
T1o) with the cold stress test.

3.3 Affine registration process of DF

This paper proposes the use of convolutional neural
networks (CNNs) to perform affine registration of
thermal images of the plantar foot of patients, for the
two type of registration.

Types of registration

-Contralateral registration: this type consists
of aligning the image of right and left feet of the
same patient by dividing the segmented images into
two (right and left). The right foot image is used as
the fixed image, while the left foot image is flipped
vertically to match the orientation of the right foot
and is considered the moving image., in order to
calculate the temperature difference between the two
teet atter aligning them. The process is detailed in
Fig.10

-Multitemporal registration: This second type
consists of aligning a pair of thermal images of the
same feet taken at two different times (Section.3.2)
, before and after a cold stress test that lasted for
10 minutes. The image of the right foot captured at
the later time called time Tjj is treated as a moving
image, while the image of the same foot taken earlier(
time Tj is considered the fixed image. The same
approach is taken for the left foot. The objective is to
align the two images of each foot for calculating the
temperature differences acquired at time Ty and T7g.

Affine registration

In this work, the affine registation is used to align
thermal images of the plantar foot in order to detect
hyperthermia areas and localize regions at risk ot
ulceration. the process consists in using the four con-
volutional neural network architectures (Section.2) to
predict the optimal affine transformation parameters
between the moving and fixed images, which can
be formulated by the transformation matrix T. Once
the matrix is obtained, a spatial transformation is
applied to align the moving image with the fixed
one.
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Fig.10 demonstrated the process used to perform
more effective affine registration on the plantar
foot of the thermal images on the both plantar foot
of the thermal images dataset (contralateral and
multitemporal) by using the four CNNs models.

4 Experiments and results

In this section, we present the results of four convo-
lutional neural network models that were applied to
two types of acquisitions (contralateral and multitem-

poral).

4.1 Traning and parameters

For contraleteral registration, the dataset was split
into two subsets. Th training set consisted of 315
pairs of feet, including the right foot (fixed) and
the left foot flipped horizontally (moving), while
the testing set included 79 pairs. Multitemporal
registartion, the training set consisted of 234 pairs
of the same feet acquired at two different times
(Tp and Typ) and the testing set included 58 pairs.
The training sets was used to train the model
and optimize the connection parameters for the
different neurons. while the test set was only used
to test registration accuracy and model reliability.
The objective was to assess the effectiveness of
these models in both registration (contralateral and
multitemporal).

The original images were in PNG format with a size
of 640x280 pixels. However, they were resized to
256x256. For the convenience, the image intensity
was normalized to a range of [0, 1]. In the present
work, all models were trained with Tensorflow and
Keras using Adam with a learning rate of 104 as
an optimizer and a batch size was set to 1 for all
models. To register the moving image, the spatial
transformer module adapted from the open-source
code in VoxelMorph was used.

To enhance the performance of affine registration
and improve the robustness of the network, we used
data augmentation for the training datasets. In the
both cases of registration, the networks were trained
using thermal images from the training set and
tested on images from the test set that the networks
has not seen before.

4.2 Evalution metric

We evaluated the effectiveness of four CNN
models using the three most commonly used metrics
for affine registration: the Dice Similarity Coefficient

(DSC), which was introduced for the image regis-
tration dissimilarity assessment. the Mean Squared
Error (MSE), which measures the pixel-wise differ-
ence between two samples (the fixed and registered
images), and Peak Signal to Noise Ratio (PSNR),
which indicates the quality of similarity between the
fixed image and registered image, a higher PSNR
value signifies greater similarity between two images.

- The Dice similarity coefficient (DSC) is de-
tined by (Equ.2) :

DSC =2FNWFUW )

Where F is the fixed image and W is the registered
image.
- The mean squared error is defined by (Equ.3):

11 ot s
MSE = &3 Y. Y (F(i.j) —W(,j))? (3)

That 1 and j denotes the pixel location in the fixed
image F and registred image W based on x-y coordi-
nates and N represents the total number of pixels in
the image.

- Peak Signal to Noise Ratio (PSNR) is defined by
(Equ.4):

PSNR = 10.log19(MAX2?MSE) (4)

Where M AX]| is the maximum possible pixel value
of the image.

4.3 Quantitative Results

The performance of the four Convolutional Neu-
ral Networks (CNNs) for affine registration was eval-
uated on two thermal image datasets (contralateral
and multitemporal).

As shown in table.1, the results of contralateral regis-
tration indicate that the Affine ConvNet and VGG16
models achieved a DSC? value of approximately 95%,
followed by AIRNet model with DSC of 94%, and the
DenseNet121 model achieved a DSC of 90%. These
results represent a significant improvement over the
initial registration, which had a DSC of only 76%,
which demonstrate the effectiveness of the CNNs
models aligning thermal images accurately.

For multitemporal registration, the camera distance
and position can change between time Ty and T,
as well as the freehand manner in which the cold
stress test images are captured using smartphones
can lead to changes in scale between the two feet and
making the registration task more complicated. The
results presented in table.[1] clearly demonstrate the
complexity of this task compared to the the contralat-
eral registration, as the dice scores achieved by the
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transformation is applied to registred moving image by the matrix the transformation obtained with CNNs models.
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Table 1: Quantitative Result of Contralateral and Multitemporal plantar Foot Registration.

~ Models | | .ial AIRNet Affine ConvNet VGG16 DenseNet121
Metrics
Dice 07661 09463  0.9512 0953  0.9007
Contralateral MSE 0.0098 0.0023  0.0015 0.0017  0.0047
PSNR 2163 2726  28.62 2888  23.67
Dice 07567 09112  0.9232 09225  0.8808
Multitemporal MSE 0.0106 0.0029  0.0025 0.0026  0.0044
PSNR 2086  25.41 26.95 2624 2405
T B2 T F = T BB T F =
0. E E g _B_ 05 E E g _E_
| c : | B :
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Figure 11: Box-plot of Dice similarity coefficient (Contralat-
eral).

four CNN models were slightly lower than those of
contralateral registration.

The Affine ConvNet, VGG16, and AIRNet models
achieved DSC values of around 92%, followed by
the DenseNet121 model with a DSC of 88%. These
results indicate a significant improvement over the
initial registration, which achieved a score of only
76%.

To conduct further analysis , box plots in Fig.11 and
Fig.12 were used to display the distribution of the
Dice similarity coefficient (DSC) and mean squared
error (MSE) for contralateral registration (Section.4.2.
These values were obtained by analyzing a visually
correct overlap between the fixed image (right foot) to
the registered moving image for each tested method.
The results illustrated that the DSC values for Affine
ConvNet,VGG16 and AIRNet models were approx-
imately 5% higher than the DenseNetl21 model,
and is improved by about 18% than the DSC ob-
tained before any CNN models were applied. Ad-
ditionally, the MSE values of Affine ConvNet and
VGG16 were approximately 0.003 smaller than that
of DenseNet121, with a difference of 0.008 compared
to the initial registration.

In the context of multitemporal registration, Fig.13

Figure 12: Box-plot of Mean Squared Error (Contralateral).
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Figure 13: Box-plot Dice similarity coefficient (Multitemporal).

and Fig.14 demonstrate also the box-plots of The
Dice similarity coefficient (DSC) and mean squared
error (MSE) respectively, for each tested method. Our
results indicate that these Four CNNs models can
improve further the registration accuracy by about
13% compared with the initial registration.

4.4 Qualitative results

The qualitative results are in total agreement with
the results presented in table.1, indicating that all
three CNN models effectively achieve a precise vi-
sual overlap between the fixed thermal image and
the registered foot. Fig.15 illustrates that the Affine
ConNet, AIRNet, and VG(G16 models demonstrate
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the most effective foot registration, followed by the
DenseNet model in case of contralateral registration
images and multitemporal registration, while the
challenges due to changes viewpoint and distance
from the camera between acquisitions at different
times (ToandTyg)

Despite these challenges, the four CNN models eval-
uated in this study have demonstrated their robust-
ness, as illustrated in Fig.16, that the effectiveness
of these models is evidenced by their ability to accu-
rately align the foot images acquired at the same and
different times. Overall, the CNNs models have the
potential to registred the feet with all the complexity.

5 Clinical analysis

5.1 Data collection

Medical data include age, time of diagnosis (TOD),
body mass index (BMI), the neurological assessment
and the vascular assessment. The neurological as-
sessment included the evaluation of total symptom
score (TSS) and The vascular assessment consists of
collecting the ankle brachial pressure index (ABI) for
the right and left foot, respectively ABI; and ABI;.
[26, 27]. The risk classification based on the clinical
examination results is presented below [7]:

* RO (Low risk): no ischemia, no neuropathy.
* R1 (Medium risk): no ischemia, neuropathy.
* R2 (High risk): ischemia, neuropathy.

Based on the classification by the risk. The authors
in this study classified The diabetic patients into two

groups:
* Non-Ischemic patients: low and medium risk

were combined (Ry + R;).
* Ischemic patients: High risk (Rz).

On the other hand, the thermal images used in this
study were acquired using a Samsung Galaxy S8 and

Table 2: Mean and standard deviation of age, time of diagnosis
(TOD), total symptom score (TSS), ABI; and ABIly of each

group.

Groups
Clinical General | Non- Ischemic
data ischemic | (Rp)
(Ro + Ry)
Age 62.81 61.7 65
(+10.4) (+10.7 (£9.56)
TOD 10.17 8.94 127
(18.85) (£8.25 (£9.60)
TSS 3.38 3.35 3.44
(+2.75) (+2.93) (£2.39)
ABIg 1.01 1.09 0.83
(£0.2) (+0.107) | (+0.21)
ABI; 0.982 1.07 0.79
(+£0.2) (+0.106) | (+0.2)
Total 128 86 42

Flir One Pro camera. After being segmented, they
are split into two images , one for each foot. Accurate
alignment the two contralateral feet (right and left
feet) is necessary to calculate the point-to-point tem-
perature difference between the left and right feet,
denoted as |A| using CNNs model of affine registra-
tion. A set of thermal information was extracted from
the acquired images and temperature maps(Fig.17).
The mean temperature of the plantar foot surface
at time 0 and 10 minutes for both the left and right
and the mean temperature of |AT| was calculated
for two time T and Tg. These thermal values were
calculated for the left and the right foot. As results
are almost identical for both feet, we have opted to
present the results for the left foot only. Table.[3] con-
tains the mean values of the thermal data for each

group.

Table 3: Mean values and standard deviations of thermal infor-
mation for each group

Groups
Thermal | General Non- Ischemic
data (°C) ischemic | (R;)
(Rp + Rq)
Ty 2787 (£ | 2790 (= | 27.79
2.18) 2.15) (+2.26)
|AT|g 0.49 0.455 0.56
(+0.28) (+0.259) (+0,31)
T1o 25.84 25.8 25.52
t=2:55) (+2.74) (+2,14)
|AT |10 0.58 0.544 0.66
(+0.30) (+0.289) (+0.31)
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(a) (b) (<) (d) (e) (f)

Figure 15: Contralateral Registration . The foot in green is the fixed foot (Right foot) and the foot in red is the moving foot (Flipped
left foot). (a) fixed image (b)before registration (c) AIRNet (d) Affine ConvNet (e) VGG16 (f) DenseNet121.

5.2 Results

A Student t-test was performed on the age, TOD,
TSS to assess if there were significant differences in
these two groups( Ischemic and no Ischemic) based
on table.2. ABI (ABIr and ABI;) was not included
in this test since the risk group was mainly based on
this variable.

From (Table.4), there are no significant ditferences

Table 4: Related student t-test of clinical data

Table 5: Related student t-test of thermal data

t-test
Thermal data | t-value p-value
Ty 0.2426 0.8087
AT g -2.1271 0.0357
T1o -0.0456 0.9640
|AT |10 -2.1572 0.0329

t-test
Clinical data | t-value p-value
Age — 1.6 0.0804
TOD - 2175 0.0348
TSS - 1.1854 0.8531

maps.

Ischemic patients have poor blood circulation and
low blood flow to their legs due to artery narrow-
ing. Clinically, these patients typically have cold feet.
From the table.5, we observed that the ischemic group
(Rz) has a higher temperature ditterence between con-

in age or total symptom score (TSS) were observed
between the two groups. However, the time of diag-
nosis (TOD) was found to be significantly different
among the groups( p < 0.05) indicating that TOD is
an important factor in the classification of patients
by risk.

The t-test was also performed on the thermal informa-
tion (Table.3) on both groups to assess the statistically
significant difterence between them based on the ex-
tracted information from the images and temperature
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tralateral feet at time 0 and 10 minute (|AT|p = 0.56
and |AT|,p = 0.66) compared to the non-ischemic
group (Rg + Ry).

Furthermore, the results of the Student t-test in ta-
ble.5 demonstrated that there is a significant differ-
ence between the two groups based on |AT|p and
|AT|19 (p < 0.05). These results suggest that the
temperature difference |AT| can be used as a com-
plementary tool to medical examination. This will
allow for distinguishing between ischemic and non-
ischemic groups.
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(a) (b) (<) (d) (e) (f)

Figure 16: Multitemporal Registration. The foot in red is the fixed foot (right at Ty) and the foot in green is the moving foot((right at
Thp))- (a) fixed image (b)before registration (c) AIRNet (d) Affine ConvNet (e) VGG16 (f) DenseNet121.

Acquisition
system

(b)

Figure 17: Extraction of Thermal informations. (a) Mean of T
and Tyg and (b) Temperature difference |AT]|.

6 Conclusion

In this paper, we attempted to use affine registration
methods based on CNNs to align thermal images for
diabetic foot application. For the registration of con-
tralateral feet, the foor models were evaluated which
the results in table.1 and Fig.15 show that the Affine
ConNet, VGG16 and AIRNet models, followed by
DenseNet performed better, in comparison with the
initial registration. However, we observed slightly
lower performance in multitemporal registration
compared to contralateral registration. This could
be due to changes in capturing viewpoint and

distance between the two moments (TpandTy),
which increased the complexity of registration. The
Dice coefficients obtained showed a DSC wvalue of
0.92 for atfine ConvNet and VGG16 in the case
of multitemporal registration, compared to a DSC
value of 0.95 for contralateral registration. Despite
this ditterence, our tested methods proved to be
etfective, as demonstrated by the results presented
in the table.1 and Fig.16, when compared to inital
registration.

his study focuses on using CNN models to register
feet with all complexities associated with the
adopted acquisition protocols (single acquisition and
cold stress test), which are based on a smartphone
and a dedicated thermal camera. The purpose of
this registration task is to identify abnormalities in
the plantar foot of patients with diabetic foot (DF)
disorder.

In the future, we intend to expand our dataset
to to enhance the accuracy of the CNNs models.
Additionally, we plan to improve all the tested
models and combine them with the segmentation
task to create a complete system of diagnostic
that could be used by clinicians during diabetic

11
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foot examination. The ultimate goal is to identify
hyperthermia areas and detect DF disorders in their
early stages.
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